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			Conjugate	polymers	like	polythiophenes	have	a	through-conjugaBon	π-electron	system	in	a	polymer	
backbone.	General	organic	compounds	like	a	corresponding	monomer	or	a	repeaBng	unit	carry	the	
electrons	saBsfying	the	[										(a)										]		principle;	namely,	each	molecular	orbital	is	occupied	with	two	
electrons,	up	and	down	each.	When	filled	from	boMom	to	top,	the	highest	orbital	of	the	occupied	
orbitals	is	called	[				(b)				],	and	the	lowest	orbital	of	the	unoccupied	ones	is	called	[			(c)				].		AOer	
polymerizaBon,		the	band	theory	tells	us	that	the	[			(b)			]	and	[			(c)			]	in	the	monomeric	form	construct	
[			(d)			]	and	[		(e)			]	bands,	respecBvely,	aOer	polymerized.		In	organic	conjugate	polymers,	there	is	a	
[							(f)							]	between		the	[			(d)			]	and	[		(e)			]	bands,	owing	to	the	strong	chemical	bonding	nature	of	
the	π-electrons.		The	[			(d)			]	band	is	enBrely	filled	by	electrons,	while	the		[		(e)			]	band	is	completely	
empty.	Under	such	condiBons,	the	material	has	no	carrier	and	accordingly	behaves	as	an	insulator.		
			When		an	electron	[			(g)			]	is	doped,	or	in	other	words	the	polymer	is	oxidized,	holes	will	be	generated	
in	the	[			(d)			]	band.	On	the	other	hand,	when	an	electron	[			(h)		]	is	doped,	electrons	are	injected	into	
the	[			(e)			]	band.	This	model	actually	works	in	inorganic	semiconductors.	But	it	does	not	explain	the	
metallic	behavior	of	organic	polymers.		
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for	π-conjugate	polyenes.		

p-type	semiconductor		 n-type	semiconductor		

acceptor	level		

donor	level		



			Let	us	take	polythiophenes	for	example.	We	can	imagine	two	canonical	forms	for	polythiophenes:		
[			(i)			]	form	and	[			(j)			]	form.	The	former	is	more	stable	than	the	laMer.	AOer	the	polythiophene	is	
oxidized,	the	regular	aromaBc	structure	is	broken	to	form	a	parBal	quinoid	structure.	Such	a	radical	
caBon	porBon	with	a	laXce	deformaBon	is	named	a	[			(k)			].	Since	the	parBal	quinoid	structure	is	
unstable,	it	is	ready	to	be	oxidized	again,	giving	a	dicaBonic	porBon	upon	further	oxidaBon.	Such	a	
dicaBonic	structure	is	named	a	[			(l)			].			
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			A	plausible	polaron	model	is	as	follows.		
			The	energy	levels	of	the	quinoid	bonding	and	anBbonding	orbitals	are	located	within	the	[			(f)				].	It	is	
because	the	π-bonding	nature	of	the	quinoids	is	weaker	than	that	of	the	aromaBcs.	AOer	the	polymer	is	
oxidized,	a	half-filled	[			(b)			]	of	the	polaron	is	located	just	above	the	top	of	the	[			(d)			]	band,	and	a	
vacant	[			(c)			]	of	the	polaron	is	located	just	below	the	boMom	of	the	[			(e)			]	band.	The	counter	anion	
must	be	present	near	the	caBon	due	to	the	Coulombic	interacBon,	which	is	the	origin	of	the	naming	
polaron.		
			Further	doping	leads	to	the	formaBon	of	a	[			(l)			]	instead	of	another	[			(k)			].	Much	further	doping	
produces	many	[			(l)			]	levels	to	form	the		[			(l)			]	bands.	When	a	newly	formed	band	is	connected	to	
the	host	[			(d)			]	bands,	the	gapless	band	structure	is	realized.	Consequently,	the	material	becomes	to	
be	metallic.			

A	plausible	polaron	model	to	explain	the	metallic	behavior.		
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