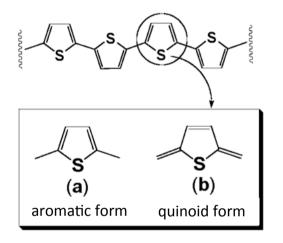
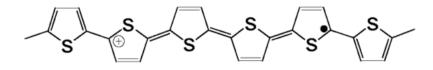
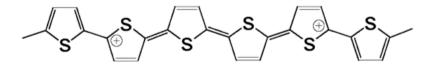

From the textbook of "Chemistry and Biotechnology Laboratory II" for the 3rd year students.


Conjugate polymers like polythiophenes have a through-conjugation π -electron system in a polymer backbone. General organic compounds like a corresponding monomer or a repeating unit carry the electrons satisfying the [(a)] principle; namely, each molecular orbital is occupied with two electrons, up and down each. When filled from bottom to top, the highest orbital of the occupied orbitals is called [(b)], and the lowest orbital of the unoccupied ones is called [(c)]. After polymerization, the band theory tells us that the [(b)] and [(c)] in the monomeric form construct [(d)] and [(e)] bands, respectively, after polymerized. In organic conjugate polymers, there is a [(f)] between the [(d)] and [(e)] bands, owing to the strong chemical bonding nature of the π -electrons. The [(d)] band is entirely filled by electrons, while the [(e)] band is completely empty. Under such conditions, the material has no carrier and accordingly behaves as an insulator. When an electron [(g)] is doped, or in other words the polymer is oxidized, holes will be generated in the [(d)] band. On the other hand, when an electron [(h)] is doped, electrons are injected into the $\left\{ \left(o \right\} \right\}$

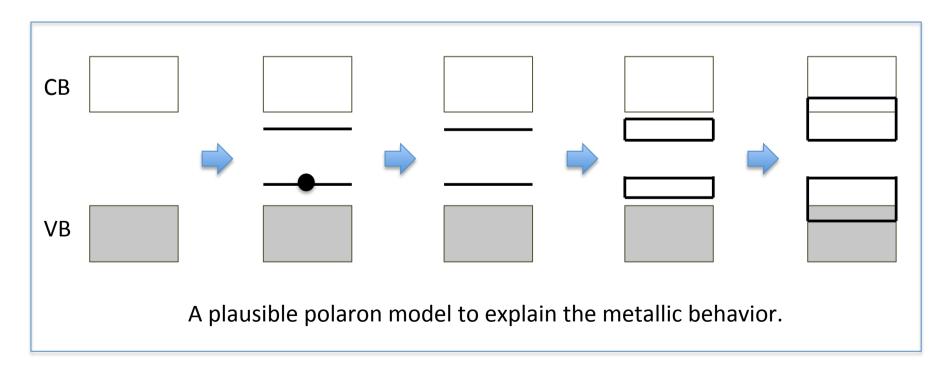
the [(e)] band. This model actually works in inorganic semiconductors. But it does not explain the metallic behavior of organic polymers.



From the textbook of "Chemistry and Biotechnology Laboratory II" for the 3rd year students.


Let us take polythiophenes for example. We can imagine two canonical forms for polythiophenes: [(i)] form and [(j)] form. The former is more stable than the latter. After the polythiophene is oxidized, the regular aromatic structure is broken to form a partial quinoid structure. Such a radical cation portion with a lattice deformation is named a [(k)]. Since the partial quinoid structure is unstable, it is ready to be oxidized again, giving a dicationic portion upon further oxidation. Such a dicationic structure is named a [(l)].

(c) polaron structure


(d) bipolaron structure

A plausible polaron model is as follows.

The energy levels of the quinoid bonding and antibonding orbitals are located within the [(f)]. It is because the π -bonding nature of the quinoids is weaker than that of the aromatics. After the polymer is oxidized, a half-filled [(b)] of the polaron is located just above the top of the [(d)] band, and a vacant [(c)] of the polaron is located just below the bottom of the [(e)] band. The counter anion must be present near the cation due to the Coulombic interaction, which is the origin of the naming polaron.

Further doping leads to the formation of a [(I)] instead of another [(k)]. Much further doping produces many [(I)] levels to form the [(I)] bands. When a newly formed band is connected to the host [(d)] bands, the gapless band structure is realized. Consequently, the material becomes to be metallic.

