How to find symmetry and symmetry operations？

The inversion center，mirror（reflection）plane，rotation axis etc．are located within a molecule．

A molecule after operation must be identical to the original molecule．
＂ n ＂in C_{n} is defined with the operation rotated by $360^{\circ} / \mathrm{n}$ ．

C_{6} 主軸 $:$
一番 n の大きい
回転軸
You have to find the highest n of rotaional operations，
 and you call this axis＂unique＂or＂z＂．
S_{n} is another symmetry operation but it is synthesized from＂rotation－reflection．＂

初めの配置（a）を z 軸を中心に 90° 回転させると（b）の配置となる． （b）の鏡の面は対象面（ σ_{h} ）である

What is the operation S_{4} ？
Reflection with respect to σ_{h} after C_{4} with respect to z ．
Namely，$S_{4}=\sigma_{\mathrm{h}} \bullet C_{4}$ ．
Please confirm $C_{2}=S_{4}^{2}$ ．

座標で表わすと in vector expression

$$
(x, y, z) \rightarrow(-x,-y,-z)
$$

cf．

$$
\begin{gathered}
\sigma(/ / x y) \\
C_{2}(/ / z)
\end{gathered}(x, y,-z)
$$

対称操作を2回続けて行った結果は別の対称操作と同じになる。

operation after operation gives a new operation．
対称操作を2回続けて行った結果は別の対称操作と同じになる。

座標で表わすと in vector expression $(x, y, z) \rightarrow$

i	$(-x,-y,-z)$
$\sigma(/ / x y)$	$(x, y,-z)$
$C_{2}(/ / z)$	$(-x,-y, z)$

$\sigma_{v}(/ / x) \quad \sigma_{\mathrm{v}}(/ / y)$
$(x, y, z) \rightarrow(-x, y, z) \rightarrow(-x,-y, z)$
$\begin{gathered}C_{2}(/ / z) \\ \sigma_{v}(/ / y) \times \sigma_{v}(/ / x)=C_{2}\end{gathered}$
$\sigma_{\mathrm{v}}(/ / x) \sigma_{\mathrm{v}}(/ / y) \sigma_{\mathrm{v}}(/ / z)$
$(x, y, z) \rightarrow(\quad)$
$\sigma_{\mathrm{v}}(/ / z) \times \sigma_{\mathrm{v}}(/ / y) \times \sigma_{\mathrm{v}}(/ / x)=[\quad$

Point Group．点群

＂Group＂in mathematically meaning：
the product of an element and an element must be an element in the subset．The group is closed．要素と要素の積はその集合内の要素でなければならない。群は閉じている。

A tetrahedron：point group T_{d}

正四面体型と正八面体型錯体の対称性を調べると，非常に高い対称性をもっている ことがわかる。正四面体型は対称面 σ_{d} をもっているので，T_{d} で示されるが，対称要

素と対称操作の数は次のようになる。
symmetry element 対称要素 $\quad \begin{array}{llllll}C_{3} & C_{2} & S_{4} & \sigma_{\mathrm{d}} & E\end{array}$
the number of symmetry elements $\begin{gathered}\text { 操作の数 } \\ \end{gathered}$
ここで，E は操作しない操作（恒等操作）である．正四面体型錯体の対称操作は 24 E ：identity or no operation

An octahedron：point group O_{h}

symmetry element 対称要素 $\begin{array}{llllllllllll} & C_{3} & C_{2}^{\prime} & C_{4} & C_{2} & \mathrm{i} & S_{4} & S_{6} & \sigma_{\mathrm{h}} & \sigma_{\mathrm{d}} & E\end{array}$ the number of symmetry elements $\begin{gathered}\text { 操作の数 } \\ \end{gathered} \begin{array}{llllllllllll}8 & 6 & 6 & 3 & 1 & 6 & 8 & 3 & 6 & 1 & 48 \text {（合計）}\end{array}$

このように，正八面体型錯体の場合には 48 個の対称操作が存在し，きわめて高い対称性をもっていることがわかる。

Table of Five－types of symmetry elements，operations，and symbols．

Element	Operation	Symbol
Identity	identity	Q 1
Proper axis	本義回転	rotation by $(360 / n)^{\circ}$
Symmetry plane	reflection in the plane	Q 2
Inversion center	inversion of a point at $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ to $(-\mathrm{x},-\mathrm{y},-\mathrm{z})$	

What is＂Chiral＂？キラル（化学），カイラル（物理）

If a molecule belongs to a chiral point group，then it has a mirror image that cannot be superimposed with the original molecule．The two mirror images are called enantiomers．
Chiral point groups are classified into two：（1）chiral groups and（2）purely rotational groups．
（1）point group C_{1}（which has E as an only element）．Many biological molecules．
（2）$C_{\mathrm{n}}, D_{\mathrm{n}}, T, O$
＂Molecules without S_{n} symmetry are chiral．＂

2－blade propeller ：
two C_{2}＇s perpendicular $C_{2}(z)$
\rightarrow point group D_{2}
\rightarrow chiral（case 2）

screw ：
no $C_{2}{ }^{\prime}$ perpendicular C_{4}
\rightarrow point group C_{4}
\rightarrow chiral（case 2）

1，3，5，7－tetrachloro－1，3，5，7－cyclooctatetraene
Only S_{4} symmetry is found．
\rightarrow point group S_{4}
\rightarrow achiral（キラルでない）
No σ ，no i ．But the mirror image is superimposed to original one．

Nomenclature／Classification of point groups 2
点群の種類

Schönflies記号
$C_{2 v}$
for molecules，point group（分子，点群）

Example
operations（ E is excluded．）
点群の記号とこれらの点群に含まれる恒等操作 E を除く対称操作の例 \dagger

	C_{8}	NOCl	σ_{h}
	C_{2}	$\mathrm{H}_{2} \mathrm{O}_{2}$	C_{2}
	$C_{2 v}$	$\mathrm{H}_{2} \mathrm{O}$	$C_{2}(z), \sigma_{v}(x z), \sigma_{v}{ }^{\prime}(y z)$
	$\mathrm{C}_{2 \mathrm{~h}}$	trans $-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$	$C_{2}(z), \sigma_{\mathrm{h}}(x y), i$
	$C_{3 v}$	NH_{3}	$2 C_{3}(z), 3 \sigma_{v}$
	$\mathrm{C}_{4 \mathrm{v}}$	$\mathrm{B}_{5} \mathrm{H}_{9}$	$2 C_{4}(z), C_{2}(z), 2 \sigma_{\mathrm{v}}, 2 \sigma_{\mathrm{d}}$
	$C_{6 v}$		${ }_{2} C_{6}(z), 2 C_{3}(z), C_{2}(z), 3 \sigma_{\mathrm{v}}, 3 \sigma_{\mathrm{d}}$
$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$	$D_{2 \mathrm{~d}}$	アレン allene	$C_{2}(z) ; 2 S_{4}(z), 2 C_{2}(x$ および $y), 2 \sigma_{\mathrm{d}}$
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$	$D_{\text {2h }}$	エチレン ethylene	$C_{2}(x), C_{2}(y), C_{2}(z), i, \sigma_{x y}, \sigma_{x z}, \sigma_{y x}$
cyclohexane	$D_{3 \mathrm{~d}}$	シクロヘキサン	$2 C_{3}(\underline{z}), 2 S_{6}(z), 3 C_{2}\left(z\right.$ に対して 1 ），$i, 3 \sigma_{\text {d }}$
cyclopropane	$D_{3 \mathrm{~h}}$	シクロプロパン	$2 C_{3}(z), 2 S_{3}(z), 3 C_{2}\left(z\right.$ に対して」），$\sigma_{\mathrm{h}}, 3 \sigma_{v}$
cyclobutane	$\boldsymbol{D}_{4 \mathrm{~h}}$	シクロブタン	$2 C_{4}(z), C_{2}(z), 2 S_{4}(z), 2 C_{2}{ }^{\prime \prime}(z$ に対して $), 2 C_{2}{ }^{\prime}(z$ に対して L），i， $2 \sigma_{v^{\prime}}, 2 \sigma_{\mathrm{v}}{ }^{\prime \prime}, \sigma_{\mathrm{h}}$
benzene	$D_{6 \mathrm{~h}}$	ベンセン	$\begin{aligned} & 2 C_{6}(z), 2 C_{3}(z), C_{2}(z), 2 S_{6}(z), 2 S_{3}(z), 3 C_{2}(z \text { に対して }), \\ & 3 C_{2}^{\prime}(z \text { に対して }), i, \quad \sigma_{\mathrm{h}}, 3 \sigma_{\mathrm{v}}, 3 \sigma_{\mathrm{d}} \end{aligned}$
methane	$\boldsymbol{T}_{\text {d }}$	メタン	$8 C_{3,} 6 S_{4}, 3 C_{2}\left(=3 S_{4}^{2}\right), 6 \sigma_{\mathrm{d}}$
	$O_{\text {b }}$	SF_{6}	$\begin{aligned} & 6 C_{4}(x, y, z), 3 C_{2}(x, y, z), 6 S_{4}(x, y, z), 8 C_{3}(\text { diag }), 8 S_{6}(\text { diag }), \\ & 6 C_{2}, 3 \sigma_{\mathrm{h}}, 6 \sigma_{\mathrm{d}}, i \end{aligned}$

$\dagger z$ 軸が垂直方向にあると仮定する。 On the assumption of z－axis in a vertical direction．

How to determine the point group ?

1. Determine if the molecule is of high or low symmetry.
2. If not, find the highest order rotation axis, C_{n}.
3. Determine if the molecule has any C_{2} axes perpendicular to the principal C_{n} axis. If so, then there are n such C_{2} axes, and the molecule is in the D set of point groups. If not, it is in either the C or S set of point groups.
4. Determine if the molecule has a horizontal mirror plane $\left(\sigma_{\mathrm{h}}\right)$ perpendicular to the principal C_{n} axis. If so, the molecule is either in the C_{nh} or D_{nh} set of point groups.
5. Determine if the molecule has a vertical mirror plane $\left(\sigma_{v}\right)$ containing the principal C_{n} axis. If so, the molecule is either in the C_{nv} or D_{nd} set of point groups. If not, and if the molecule has n perpendicular C_{2} axes, then it is part of the D_{n} set of point groups.
6. Determine if there is an improper rotation axis, $S_{2 \mathrm{n}}$, collinear with the principal C_{n} axis. If so, the molecule is in the $S_{2 \mathrm{n}}$ point group. If not, the molecule is in the C_{n} point group.

Point Group Decision Tree

https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/symmetry/symmtry.htm

F．A．Cotton＂Chemical Applications of Group Theory＂2nd Ed．1971．（訳書は丸善）

Homework

Answer the point group symbol of each compound．

（a）

（b）

（c）

（d）

（e）

Why we name σ_{d} instead of σ_{v} in a series of D point groups？

Ans．）When a mirro plane is found in a vertical direction（usually $\mathrm{n} \sigma_{\mathrm{v}}$ ）and in a direction just bisecting any two neiboring $C_{2}{ }^{\prime}(x y)$ axes，the mirror plane is named a dihedral mirror plane，σ_{d} ．The point group is named $D_{\text {nd }}$ ．
D_{n} 群の要素を持ち，かつ全ての隣接した C_{2} 軸の間の角を 2等分する垂直なn個の鏡面（ σ_{d} 面）を持つ分子は D_{nd} 点群に属す

Staggered configuration

$$
\mathrm{C}_{2} \mathrm{H}_{6} \quad \mathbf{D}_{3 \mathrm{~d}}
$$

H

Triangular antiprism

