Solid sate chemistry ex.1) photochromic materials

Diarylethenes

open form (solid line) cross-conjugation

closed form (broken line) through-conjugation

M. Irie et al.,

Bull. Chem. Soc. Jpn., 2004, 77, 195.

Solid sate chemistry

 ex.1) photochromic materials
colorless open-ring isomer

2

12

Reaction - structure relation

M. Irie et al.,

Bull. Chem. Soc. Jpn., 2004, 77, 195.

Fig. 4. Diarylethene derivatives showing single-crystalline photochromism.

Solid sate chemistry ex.2) photoresist

KPR (Kodak Co. Ltd.)

cross-linked polymers
lithography:

Solid sate chemistry

 ex.3) photo-polymerizationCrystal structure
of diacetylenes

Reactive carbon atoms

Hydrogen bonding helps molecular arrangemen suitable for photo-polymerization

Schmidt rule boundary

Reactivity - geometry relationship
"Molecular Crystals" by J.D.Wright

Solid sate chemistry ex．3）photo－polymerization

Table．The cell parameters of reactive DSPs

α－phase distylylpyrazine（DSP）

化合物	空閭群	$\begin{aligned} & a \\ & (\alpha) \end{aligned}$	b (β)	$\begin{aligned} & c(/ \mathrm{nm}) \\ & (\gamma)\left(/^{\circ}\right) \end{aligned}$	二重結合間距灘／nm
$\begin{aligned} & \text { 2, 5-ジスチリルピラジン(DSP)* } \\ & (\alpha \text { 相) } \end{aligned}$					
monomer	Pbca	2.0638	0.9599	0.7655	0.3939
polymer		1.836	1.088	0.752	
1，4－フェニレンジアクリル酸シメチルエステル（PDAMe）＊＊					
monomer		$\begin{aligned} & 0.7148 \\ & (98.97) \end{aligned}$	$\begin{aligned} & 0.8382 \\ & (116.85) \end{aligned}$	$\begin{aligned} & 0.5844 \\ & (78.06) \end{aligned}$	0.3957
polymer	$P \overline{1}$	$\begin{aligned} & 0.782 \\ & (107.8) \end{aligned}$	$\begin{aligned} & 0.742 \\ & (106.0) \end{aligned}$	$\begin{aligned} & 0.604 \\ & (78.8) \end{aligned}$	
1，4－フェニレンジアクリル酸シフェニルエステル（PDAPh）＊＊					
monomer	$P 21 / c$	0.6917	$\begin{aligned} & 1.8584 \\ & (101.87) \end{aligned}$	0.7557	0.3917
polymer	$P 21 / c$	0.750	$\begin{aligned} & 1.73 \\ & (102.0) \end{aligned}$	0.750	
＊DSP：					

Explain why $2 \pi+2 \pi$ cycloaddition reactions are allowed in photo－process and forbidden in thermal－process．

Solid sate chemistry ex．2）vitamin D3

Vitamin－D deficiency rickets（くる病），a disorder that becomes apparent during infancy or childhood，is the result of insufficient amounts of vitamin D in the body． The deficiency of vitamin D may be caused by poor nutrition，a lack of exposure to the sun，or ．．．．

Schmidt rule (0.4 nm rule)

Photoreaction requires "parallel arrayed double bonds" and "the interatomic distance within 0.4 nm."
G. M. J. Schmidt, Pure Appl. Chem. 1971, 27, 647.

Diarylethenes (intramolecular)

Diacetylenes
(intermolecular)

A summarized memo from organic chemistry textbook.
Pericyclic reactions (in polyenes)

Selectivity
$\left(\begin{array}{llll}\begin{array}{l}\text { number of } \\ \pi \text { electrons }\end{array} & 4 \mathrm{n} & \text { therm. conrot. } & \text { photo. disrot. } \\ 4 \mathrm{n}+2 & \text { therm. disrot. } & \text { photo. conrot. }\end{array}\right.$

Cycloaddition reactions (Diels-Alder reaction)

Selectivity for $i+j \pi$ electron systems

$$
\begin{aligned}
& \text { number of }=4 \mathrm{n} \quad \text { therm. forbidden photo. allowed } \\
& \pi \text { electrons } \\
& \\
& 4 \mathrm{n}+2 \text { therm. allowed photo. forbidden }
\end{aligned}
$$

Motivation and stepwise goals：

Run a Hückel MO program in your PC．

Clarify the properties and reactivities of polyenes and aromatics．

Explain the selectivity in pericyclic reactions and cycloadditions．

Predict properties of C_{60} and related molecules．

How to make a secular equation（a case study on benzene）
3－1 永年方程式の作り方
いま，ベンゼンを例にとってその永年方程式を作って見よう。各頂点にあ
$\int_{5}^{6} \int_{3}^{1}$ る炭素原子に左図のように $1,2 \cdots 6$ の番号をつける。 する上理屈

1 書ける．linear simultaneous equations based
$\left.\begin{array}{l}c_{1} \lambda=c_{2}+c_{5} \\ c_{2} \lambda=c_{1}+c_{3} \\ c_{3} \lambda=c_{2}+c_{4} \\ c_{1} \lambda=c_{3}+c_{5} \\ c_{5} \lambda=c_{4}+c_{6} \\ c_{6} \lambda=c_{1}+c_{5}\end{array}\right\}$ on the numbering of $2 p_{z}$ AOs $\left(\chi_{i}\right)$ ．
C_{i} is a coefficient of χ_{i} in LCAO MO ϕ.
ととで $c_{1}, c_{2}, \cdots c_{6}$ は，ベンゼンの分子軌道 φ を各炭素原子の $2 p \pi$ 原子軌道の
1 次結合で

$$
\begin{equation*}
\varphi=c_{1} \chi_{1}+c_{2} \chi_{2}+\cdots \cdots+c_{6} \chi_{6} \tag{2.21}
\end{equation*}
$$

と表わしたときの俰数てある，入についてはあとてその意味は明らかになるの
で，ことでは一応 $\lambda=(\varepsilon-\alpha) / \beta$ という値であるととだけをしるしておとう。
（2．20）式を書きおろす要領としては，たとえば 1 の原子については $c_{1} \lambda$ と し，これが隣の原子の原子軌道の係数の和に等しいとして $c_{1} \lambda=c_{2}+c_{6}$ という

式を作る。以下同様にして，隣の原子だけを考え他は無視すると，各原子につ without reason at いて同じような式が作られるから，ベンゼンの場合（2．20）式が直ちに書きおろ せるととになる。

2 節であ述べたように，LCAO MO 法においては 1 䉓子の有効ハミルトニア
ンを \boldsymbol{h} とすると，分子軌道 φ に対するエネルギー ε は

$$
\begin{equation*}
\varepsilon=\frac{\int \varphi h \varphi d \tau}{\int \varphi \varphi d \tau} \tag{2.23}
\end{equation*}
$$

ε is an expected energy for ϕ ．

で与えられ，との式中の $\boldsymbol{\rho}$ に（2．21）式を代入すると \quad Substitute ϕ of（2．21）into（2．23）．

$$
\begin{equation*}
\varepsilon=\frac{\left(c_{1}^{2} \alpha_{1}+c_{2}{ }^{2} \alpha_{2}+\cdots+c_{6}{ }^{2} \alpha_{6}\right)+2\left(c_{1} c_{2} \beta_{12}+c_{1} c_{3} \beta_{13}+\cdots\right)}{\left(c_{1}^{2}+c_{2}^{2}+\cdots+c_{6}^{2}\right)+2\left(c_{1} c_{2} S_{12}+c_{1} c_{3} S_{13}+\cdots\right)} \tag{2.24}
\end{equation*}
$$

となる，ただしとてで $\alpha_{r}, \beta_{r r}, S_{r r}$ は
α ：Coulomb integral
β ：resonance integral
S ：overlap integral
χ_{i} is normalized．

Hückel approximation on α ．
Hückel approximation on β ．

$$
\begin{align*}
& \alpha_{r}=\int \chi_{r} h \chi_{r} d \tau \\
& \beta_{r z}=\int \chi_{r} h \chi_{s} d \tau \tag{2.25}\\
& S_{r s}=\int \chi_{r} \chi_{z} d \tau . \quad\binom{r=1,2, \cdots 6}{s=1,2, \cdots 6}
\end{align*}
$$

なる積分を表わし，それぞれクーロン積分，共鳴積分，重なり積分と呼ばれる
ととは 2 節で説明したとおりである。なお，（2．24）式を導く際，各原子軌道関数は規格化されているとして

という条件を使い，また $\beta_{r s}$ が $\beta_{s r}$ に等しいととあ用いている。またベンゼン の各炭素原子はすべて等価であるから，クーロン積分はすべて等しく，かつ炭素，炭素間の距離が皆等しいので共鳴積分も同じ値になるととは容易に理解で きる．すなわち，これらを今それぞれ α, β と置くと

$$
\left.\begin{array}{rl}
\alpha_{1} & =\alpha_{2}=\cdots \cdots=\alpha_{6}=\alpha \tag{2.27}\\
\beta_{12} & =\beta_{23}=\cdots \cdots \cdot \beta_{56}=\beta_{61}=\beta
\end{array}\right\}
$$

となる。 この α, β はベンゼン分子についてのクーロン積分，共鳴積分と呼ば れるあのである＊。 これらをパラメーターにしてエネルギーを表わすのは韭常 に簡単でしかも便利であり，との方法を π 電子の Hückel 法という。

さて，（2．24）式中の隣合わない原子軌道間の共鳴積分はかなり小さくなるの で（距離が大きくなって），ゼロと近似しても結果には大きな影響はないだろ
う．したがって
Hückel approximation on β \＃2．

$$
\begin{equation*}
\beta_{13}=\beta_{14}=\beta_{24}=\cdots \cdots=0 \tag{2.28}
\end{equation*}
$$

とし，また重なり積分はすべて無視する。すなわち
Hückel approximation on S ．

$$
\begin{equation*}
S_{12}=S_{13}=S_{14}=S_{23}=S_{24}=\cdots \cdots=0 \tag{2.29}
\end{equation*}
$$

上のような沂似を置くと，（2．24）式は
（2．24）is simplified as：

$$
\begin{equation*}
\varepsilon=\frac{\left(c_{1}{ }^{2}+c_{2}{ }^{2}+\cdots+c_{6}{ }^{2}\right) \alpha+2\left(c_{1} c_{2}+c_{2} c_{3}+\cdots\right) \beta}{c_{1}{ }^{2}+c_{2}{ }^{2}+\cdots \cdots+c_{6}{ }^{2}} \tag{2.30}
\end{equation*}
$$

となってかなり簡単な形になる。 2 節で述べたように，ε が極小値をとるため の条件は
Energy－minimizing conditions：$\quad \frac{\partial \varepsilon}{\partial c_{r}}=0 \quad(r=1,2, \cdots 6)$
であるからとれより次の 6 個の式が得られる。
Combining（2．30）and（2．31） gives：

Rectifying（2．32）gives：

$$
\left.\begin{array}{l}
c_{1}(\alpha-\varepsilon)+c_{2} \beta+c_{6} \beta=0 \\
c_{1} \beta+c_{2}(\alpha-\varepsilon)+c_{3} \beta=0 \\
c_{2} \beta+c_{3}(\alpha-\varepsilon)+c_{4} \beta=0 \\
c_{3} \beta+c_{4}(\alpha-\varepsilon)+c_{5} \beta=0 \tag{2.32}\\
c_{4} \beta+c_{5}(\alpha-\varepsilon)+c_{6} \beta=0 \\
c_{1} \beta+c_{5} \beta+c_{6}(\alpha-\varepsilon)=0
\end{array}\right\}
$$

とれらの各式の両辺を $\boldsymbol{\beta}$ で割って移項すると

$$
\left.\begin{array}{l}
c_{2}+c_{6}=\frac{\varepsilon-\alpha}{\beta} c_{1} \\
c_{1}+c_{3}=\frac{\varepsilon-\alpha}{\beta} c_{2} \\
c_{2}+c_{4}=\frac{\varepsilon-\alpha}{\beta} c_{3} \tag{2.33}\\
c_{3}+c_{5}=\frac{\varepsilon-\alpha}{\beta} c_{4} \\
c_{4}+c_{6}=\frac{\varepsilon-\alpha}{\beta} c_{5} \\
c_{1}+c_{5}=\frac{\varepsilon-\alpha}{\beta} c_{6}
\end{array}\right\}
$$

or in a matrix expression，

$$
\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
c 1 \\
c 2 \\
c 3 \\
c 4 \\
c 5 \\
c 6
\end{array}\right)=\lambda\left(\begin{array}{l}
c 1 \\
c 2 \\
c 3 \\
c 4 \\
c 5 \\
c 6
\end{array}\right)
$$

となる。（2．33）式において $(\varepsilon-\alpha) / \beta$ を λ とおいたものか（ 2.20 ）式にほかな らない。まえに天下り式にいきなり書きおろされた（2．20）式の意味が，とれで はっきりとわかっていただけたととと思う。またそのとき保留してあった入の
The meaning of λ has been 意味も明らかになったわけである。 つまり λ は軌道エネルギー ε を clarified as：

$$
\begin{equation*}
\varepsilon=\alpha+\lambda \beta \tag{2.34}
\end{equation*}
$$

米沢貞治郎，
「量子化学入門」

Jacobi method（computer－friendly diagonalization）

$$
\begin{aligned}
& \left(\begin{array}{cc}
\alpha-E_{-1} & \beta \\
\beta & \alpha-E_{1}
\end{array}\right)\binom{C_{11}}{c_{12}}=\binom{0}{0} \quad \text { eigenvalue (characteristic value) E\#1 } \\
& \left(\begin{array}{cc}
\alpha-E_{2} & \beta \\
\beta & \alpha-E_{2}
\end{array}\right)\binom{C_{21}}{C_{22}}=\binom{0}{0} \\
& \text { eigenvalue (characteristic value) E\#2 } \\
& \lambda_{i}\left(E_{i}-\alpha\right) / \rho \text { кおic。=れる将来 } \\
& \alpha-\begin{array}{l}
\vdots \lambda \beta \\
\ddots-\downarrow \lambda \beta \text { a } \lambda \text { とねる }
\end{array} \\
& \left(\begin{array}{cc}
-\lambda_{1} \beta & \beta \\
\rho & -\lambda_{1} \beta
\end{array}\right)\binom{c_{11}}{c_{k}}=\binom{0}{0} \\
& \text { stabilization or destabilization } \\
& \text { scaled by } \lambda_{i} \text { with a unit of } \beta \text {. } \\
& \left(\begin{array}{cc}
-\lambda_{1} & 1 \\
1 & -\lambda_{1}
\end{array}\right)\binom{c_{11}}{c_{12}}=\binom{0}{0} \\
& {\left[\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+\left(\begin{array}{cc}
-\lambda_{1} & 0 \\
0 & -\lambda_{1}
\end{array}\right)\right]\binom{C_{11}}{C_{12}}=\binom{0}{0}} \\
& \underbrace{\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)}\binom{c_{11}}{c_{12}}=\lambda_{1}\binom{c_{11}}{c_{12}} \\
& \lambda_{1} \text { is an eigenvalue of this matrix. The number of } \lambda^{\prime} s \text { is } 2 \text {. } \\
& と=3 \text { で }\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{c_{21}}{c_{22}}=\lambda_{2}\binom{c_{21}}{c_{22}} \\
& \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
c_{11} & c_{21} \\
c_{12} & c_{22}
\end{array}\right)=\left(\begin{array}{ll}
\lambda_{1} c_{11} & \lambda_{2} c_{21} \\
\lambda_{1} c_{12} & \lambda_{2} c_{22}
\end{array}\right) \\
& =\left(\begin{array}{ll}
c_{11} & c_{21} \\
c_{12} & c_{22}
\end{array}\right)\left(\begin{array}{ll}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
\end{aligned}
$$

The above 2 equations are expressed as one．

Jacobi method

$$
\begin{aligned}
& \text { 人̂せ2 }\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
c_{11} & c_{21} \\
c_{12} & c_{22}
\end{array}\right)=\left(\begin{array}{ll}
c_{11} & c_{21} \\
c_{12} & c_{22}
\end{array}\right)\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) \\
& \text { =れt } H \mathbb{C}=C \lambda \text { と布く } \\
& \text { ここに左から十二巾を捯けてみる }
\end{aligned}
$$

$$
\mathbb{C}^{-1} H \mathbb{C}=\mathbb{C}^{-1} \mathbb{C} \pi=\mathbb{X}
$$

Calculation of $\boldsymbol{\lambda}\left(=\boldsymbol{C}^{-1} \mathrm{HC}\right)$ is the job for a computer to do． So，we have to learn only how to make \boldsymbol{H} ．

$$
\mathbb{C}^{-1} H \mathbb{C}=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

あでんしめでんし，つまり $\mathbb{C}^{-1} の$ 造欢は正しかった。
 なく，対角行引へ道づいていくように矤引を㳄々かける。
非纣角项のひとつをも゙はにする行列をさがすことってしまる その累栍を解くする。（ヤコビ法）

From the textbook of the third－year exercise class．

演習 計算化学

$\pi \mathrm{MO}$ of ethylene： $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
エチレンの π と π^{*} の MO は，χ_{1}, χ_{2} をそれぞれの炭素の $\chi_{2 \mathrm{pz}}$ とすると，

$$
\begin{aligned}
& \varphi_{2}=\varphi_{\pi}^{*}=0.7071 \chi_{1}-0.7071 \chi_{2} \\
& \varphi_{1}=\varphi_{\pi}=0.7071 \chi_{1}+0.7071 \chi_{2}
\end{aligned}
$$

図1に，黒板に描くときの表現法と，コンピュータに描かせるときの等値曲面法を示した。

（a）慣用的表現
handwriting way
図1 エチレンの π, π^{*} 軌道
（b）等値曲面による表現
MO software way

For a benzene input file;

```
benzene
```

6
.00
1.00 .00
.001 .00 .00
$.00 \quad .00 \quad 1.00 \quad .00$
$.00 \quad .00 \quad .00 \quad 1.00 \quad .00$
1.00 .00 . 00 . 001.00

説明: Title (memo.)
The number of AOs; the number of electrons
A triangle (half) matrix, in which
in a diagonal, put 0 .
in a neighboring position, put 1.
otherwise, put 0.
.00

Try
ethylene, 1,3-butadiene, 1,3,5-hexatriene, naphthalene, anthracene, azulene, pyrene, benzyl radical/cation/anion, fullerene[60], fullerene[70] etc.

Azulene

Homework: HMO of C60.

Hückel MO on Linear Polyenes

$$
\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}
$$

Hückel MO on Linear Polyenes

How to draw HOMO: Pairing!

Symmetry analysis of HMO on polyenes
S-A alternation from bottom to top.
HOMO S-A and LUMO A-S alternation as increasing C. A

Hückel MO general solution：Frost－Musulin＇s method
Cyclic polyenes

$$
\begin{array}{ll}
\varepsilon_{j}=\alpha+2 \beta \cos \frac{2 \pi j}{n} & H \psi_{j}=\varepsilon_{j} H_{j} \\
\psi_{j}=\sum_{\mu=1}^{n} C_{j \mu} \phi_{\mu} & \psi_{j}=\sum_{\mu=1}^{n} C_{j \mu} \phi_{\mu} \\
C_{j \mu}=\sqrt{\frac{1}{n}} \exp [i 2 \pi j \mu / n] & \varepsilon_{j}=\alpha+2 \beta \cos \frac{j \pi}{n+1} \\
j=0, \pm 1, \pm 2, \cdots \cdots, \pm \frac{n}{2} & C_{j \mu}=\sqrt{\frac{2}{n+1}} \sin \frac{j \mu \pi}{n+1} \\
i=\sqrt{-1} & \begin{array}{c}
j=1,2,3, \cdots \cdots, n
\end{array}
\end{array}
$$

Draw an n polygon with a corner at the bottom．
（a）

$$
\text { Draw an } r=2 \beta \text { circle }
$$

Draw an $r=2 \beta$ circle
α center \uparrow
（b）

Linear polyenes

Draw a half $2(n+1)$ polygon
（大学院有機化学上，講談社サイエンティフィク）

図 1－5 Frost と Musulin の方法によるベンゼンとブタジェンの分子軌道のエネルギー図
（Woodward－Hoffman rule， N．T．Anh，東京化学同人）

A typical output file from molecular-orbital calculation softwares.
ORbital energy and LCAO coif.

Eigenvalue
Coefficients for the $\mathrm{i}^{\text {th }}$ eigenvalue

The sum of $C_{i j}{ }^{2}$ equals to unity.
bond order and elation density

The π bond order between atoms i and j.
To get "a chemical bond order", add 1 due to the σ bond.

$$
\begin{aligned}
& P_{r s}=2 \sum_{i}^{0 c} C_{r i} C_{s i} \\
& q_{r}=2 \sum_{i}^{o n} C_{r i}^{2}
\end{aligned}
$$

Calculated from the same loop.

Reaction coefficients for electrophilic, nucleophilic, and radical reactions.

$$
\begin{aligned}
& f_{r}(E)=2\left(C_{r}^{\text {HOMO }}\right)^{2} \\
& f_{r}^{(N)}=2\left(C_{r}^{\text {LUMO }}\right)^{2} \\
& f_{r}^{(R)}=\left(C_{r}^{\text {HOMO }}\right)^{2}+\left(C_{r}^{\text {SUMO }}\right)^{2}
\end{aligned}
$$

Only the frontier orbitals regulate reactivity.

As for radicals, spin densily P_{r}
No spin direction (α, β) in the Hückel level. The number of electron is 1 in SOMO.

$$
C_{r}=\left(C_{r}^{\text {SOM }}\right)^{2}
$$

Selectivity of reactions of naphthalene
Hückel results
ORBITAL ENERGIES, OCCUPANOIES, AND LCAO COEFFICIENTS

2.3028	1.6180	1.3028	1.0000	0.6180	-0.6180	-1.0000	-1.3028	-1.6180	-2.3028	
2	2	2	2	2	0	0	0	0	0	
-0.3006	0.2629	0.3996	0.0000	-0.4253	0.4253	0.0000	-0.3996	-0.2629	0.3006	
-0.2307	0.4253	0.1735	0.4082	-0.2629	-0.2629	-0.4082	0.1735	0.4253	-0.2307	
-0.2307	0.4253	-0.1735	0.4082	0.2629	-0.2629	0.4082	0.1735	-0.4253	0.2307	
-0.3006	0.2629	-0.3996	0.0000	0.4253	0.4253	0.0000	-0.3996	0.2629	-0.3006	
-0.3006	-0.2629	-0.3996	0.0000	-0.4253	-0.4253	0.0000	-0.3996	-0.2629	-0.3006	
-0.2307	-0.4253	-0.1735	0.4082	-0.2629	0.2629	0.4082	0.1735	0.4253	0.2307	
-0.2307	-0.4253	0.1735	0.4082	0.2629	0.2629	-0.4082	0.1735	-0.4253	-0.2307	
-0.3006	-0.2629	0.3996	0.0000	0.4253	-0.4253	0.0000	-0.3996	0.2629	0.3006	
-0.4614	0.0000	0.3470	-0.4082	0.0000	0.0000	0.4082	0.3470	0.0000	-0.4614	
-0.4614	0.0000	-0.3470	-0.4082	0.0000	0.0000	-0.4082	0.3470	0.0000	0.4614	
Pi BOND	DER AND	ELECTRO	DENSITY			ρ_{π} is s	own in	a diago	al eleme	nt.
1.0000	0.7246	0.0000	-0.3623	0.0849	0.0000	-0.1699	0.0000	0.5547	0.0000	
0.7246	1.0000	0.6032	0.0000	0.0000	0.1560	0.0000	-0.1699	0.0000	-0.2409	
0.0000	0.6032	1.0000	0.7246	-0.1699	0.0000	0.1560	0.0000	-0.2409	0.0000	
-0.3623	0.0000	0.7246	1.0000	0.0000	-0.1699	0.0000	0.0849	0.0000	0.5547	
0.0849	0.0000	-0.1699	0.0000	1.0000	0.7246	0.0000	-0.3623	0.0000	0.5547	
0.0000	0.1560	0.0000	-0.1699	0.7246	1.0000	0.6032	0.0000	-0.2409	0.0000	
-0.1699	0.0000	0.1560	0.0000	0.0000	0.6032	1.0000	0.7246	0.0000	-0.2409	
0.0000	-0.1699	0.0000	0.0849	-0.3623	0.0000	0.7246	1.0000	0.5547	0.0000	
0.5547	0.0000	-0.2409	0.0000	0.0000	-0.2409	0.0000	0.5547	1.0000	0.5182	All
0.0000	-0.2409	0.0000	0.5547	0.5547	0.0000	-0.2409	0.0000	0.5182	1.0000	unity!

Reactions occur between a nucleophile and an electrophile.

$$
\mathrm{Nu}+\mathrm{El} \rightarrow \mathrm{Nu}-\mathrm{El}
$$

In a naphthalene molecule, every carbon atom carries a completely neutral charge, because $\rho_{\pi}=1$ appears at every carbon.

1-nitronaphthalene

nucleophile

路

Both electrophilic and nucleophilic reagents are ready to bond at the 1-($\alpha-$) position of naphthalene.

Charge is NOT a reason for the selectivity.

Selectivity of reactions of naphthalene

Hückel results
ORBITAL ENERGIES, OCCUPANCIES, AND LCAO COEFFICIENTS

Frontier electron densisty (orbital density)
"Look at the frontier (HOMO and LUMO) only."
Electrophilic reaction coefficient (when a reagent is electrophilic)

$$
\operatorname{fr}_{1}=2 C_{1 \text { (номо) }}{ }^{2}
$$

Nucleophilic reaction coefficient (when a reagent is nucleophilic)

$$
f r N_{1}=2 C_{1(\text { LUMO })}{ }^{2}
$$

【from Fukui's work】

