Woodward－Hoffman rule pericyclic reactions ペリ環状反応

$$
\begin{gathered}
\text { その漛同旋 cortatory } \\
\text { 送旅 disrotatory }
\end{gathered}
$$

Orbital symmetry ：

Electron－configurational symmetry ：

MO's conserve the orbital symmetry with respective to the symmetry of transformation.
Ex) butadiene - cyclobutene interconversion: orbital-correlation diagram.

Only S - S and A - A transformations are allowed.

No-crossing law
Orbital-correlation lines must not cross each other when they have the same symmetry.
Ex) butadiene - cyclobutene interconversion: configuration-correlation diagram.
Note that reflection symmetry is applied to disrotatory reaction.

The correlation curve implies the energy surface on the reaction coordinate.

ξ_{2}	$\phi_{1}^{2} \phi_{2}^{2}(S) \leftrightarrow \sigma^{2} \pi^{2}(S)$ l forbidden
	$\phi_{1}^{2} \phi_{2} \phi_{3}(A) \leftrightarrow \sigma^{2} \pi \pi^{*}$, allowed photo-conditions: disrotatory

Two-fold rotation symmetry is applied to conrotatory reaction.

Electron-configuration-correlation diagram:

$\phi_{1}-\pi, \phi_{2}-\sigma, \phi_{3}-\sigma^{*}$, and $\phi_{4}-\pi *$ relations are applied.

$\left(W \phi^{2}, 2 \quad\right.$	$\phi_{1}^{2} \phi_{2}^{2}(s) \leftrightarrow(S) \sigma^{2} \pi^{2}$ は allowed thermal conditions: conrotatory
$\phi_{1}^{2} \phi_{2} \phi_{2}(A) \leftrightarrow(A) \sigma^{2} \pi \pi^{*}$ forbidden	

Selectivity rule: the Woodward-Hoffman rule

thermal conditions:	$4 n$	conrotatory
	$4 n+2$	disrotatory
photo conditions:	$4 n$	disrotatory
	$4 n+2$	conrotatory

Solid sate chemistry ex.1) photochromic materials

Diarylethenes

open form (solid line) cross-conjugation

through-conjugation

M. Irie et al.,

Bull. Chem. Soc. Jpn., 2004, 77, 195.

Solid sate chemistry ex．5）vitamin D3

Vitamin－D deficiency rickets（くる病），a disorder that becomes apparent during infancy or childhood，is the result of insufficient amounts of vitamin D in the body． The deficiency of vitamin D may be caused by poor nutrition，a lack of exposure to the sun，or ．．．．

Woodward－Hoffman rule

cycloaddition reactions

協奏白句環化 supra：on one side of the plane（denote with a lower case s）
antara：across the plane（denote with a lower case a）
［4＋2］cycloaddition
Ex）Diels－Alder reaction

thermal conditions：supra－supra（s－s）（or antara－antara（aba））
［ $\mathrm{i}+\mathrm{j}$ ］cycloaddition

supra－supra or antara－antara（s－s or a－a） supra－antara or antara－supra（s－a or ass）

when $\mathrm{i}+\mathrm{j}$ is large．
If $\mathrm{i}+\mathrm{j}$ is small，only supra is sterically feasible．
In short， $\mathrm{i}+\mathrm{j}=4 \mathrm{n}+2$ ，thermally allowed．（photo．forbidden）

$$
i+j=4 n, \quad \text { photochemically allowed. (therm. forbidden) }
$$

[2+2]cycloaddition: supra-supra
Orbital correlation:

σ_{2}^{*}
σ_{1} left-side S / A reflection 2(right)

$$
\sigma_{1}^{*}+\sigma_{2}^{*}
$$

σ_{2} right-side S / A

reflection 1(left)

ss

$\sigma_{1}+\sigma_{2}$
Electron-configuration correlation:

Therefore, thermally forbidden and
photochemically allowed.
Selectivity rule: the Woodward-Hoffman rule
[$\mathrm{i}+\mathrm{j}$]cycloaddition : photo. $\mathrm{i}+\mathrm{j}=4 \mathrm{n}+2$ s-a or $\mathrm{a}-\mathrm{s}$

therm. | $i+j=4 n$ | $s-s$ or $a-a$ |
| :--- | :--- |
| $i+j=4 n+2$ | $s-s$ or $a-a$ |
| $i+j=4 n$ | $s-a$ or $a-s$ |

Solid sate chemistry ex.2) photoresist

KPR (Kodak Co. Ltd.)

lithography:

Solid sate chemistry

ex．4）photo－polymerization

Table．The cell parameters of reactive DSPs

α－phase distylylpyrazine（DSP）

化合物	空間群	$\begin{aligned} & a \\ & (\alpha) \end{aligned}$	$\begin{aligned} & \hline b \\ & (\beta) \\ & \hline \end{aligned}$	$\begin{aligned} & c(/ \mathrm{nm}) \\ & (\gamma)\left(/{ }^{\circ}\right) \end{aligned}$	二重結合間距離／nm
2，5－ジスチリルピラジン（DSP）＊ （ α 相）					
monomer polymer	Pbca	2.0638	0.9599	0.7655	0.3939
		1.836	1.088	0.752	
1，4－フェニレンジアクリル酸ジメチルエステル（PDAMe）＊＊					
monomer	$P \overline{1}$	$\begin{aligned} & 0.7148 \\ & (98.97) \end{aligned}$	$\begin{aligned} & 0.8382 \\ & (116.85) \end{aligned}$	$\begin{aligned} & 0.5844 \\ & (78.06) \end{aligned}$	0.3957
polymer	$P \overline{1}$	$\begin{aligned} & 0.782 \\ & (107.8) \end{aligned}$	$\begin{aligned} & 0.742 \\ & (106.0) \end{aligned}$	$\begin{aligned} & 0.604 \\ & (78.8) \end{aligned}$	
1，4－フェニレンジアクリル酸シフェニルエステル（PDAPh）＊＊					
polymer	$P 21 / c$	0.6917	$\begin{aligned} & 1.8584 \\ & (101.87) \end{aligned}$	0.7557	0.3917
	$P 21 / c$	0.750	$\begin{aligned} & 1.73 \\ & (102.0) \end{aligned}$	0.750	
＊DSP：					

Explain why $2 \pi+2 \pi$ cycloaddition reactions are allowed in photo－process and forbidden in thermal－process．

［4＋2］cycloaddition reactions

Orbital－correlation diagram：

Nguyen Trong Anh著「ウッドワード－ホフマン則」（東京化学同人）

[4+2]cycloaddition reactions

Electron-configurationcorrelation diagram:

$\Psi_{2}(\mathrm{~A})$ —

Explain:

In [4+2] supra-supra, thermally allowed, and photo forbidden.
(Antara-antara and supra-supra have symmetrically the same meaning.
Supra-antara and antara-supra have the same meaning.)

Explain the stereochemistry.

