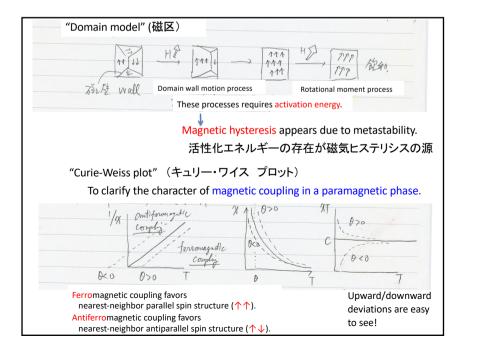
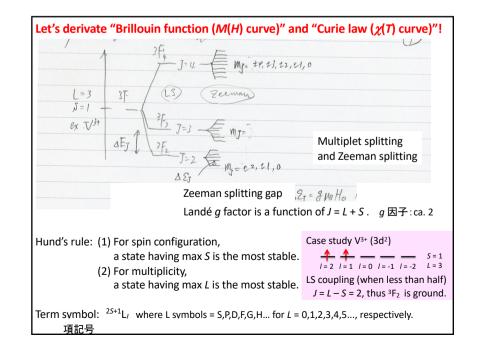
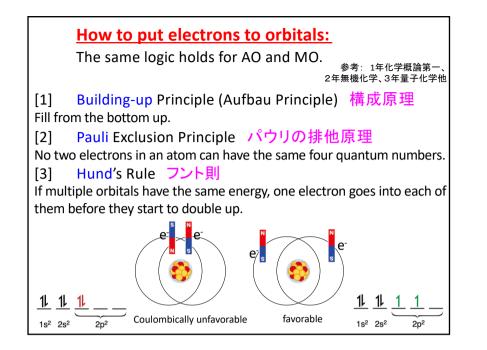
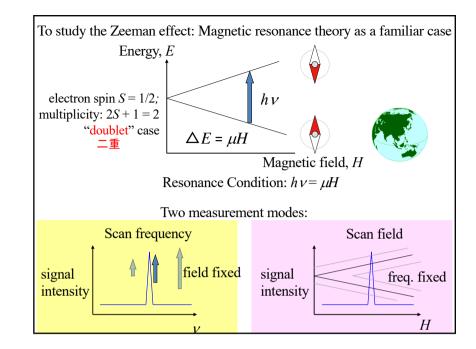
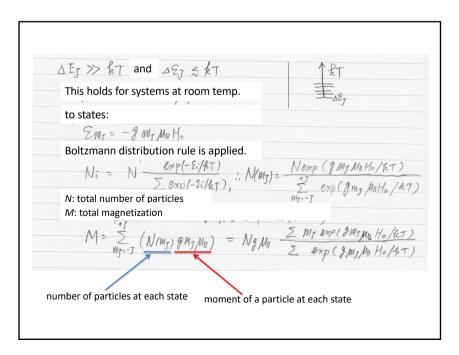

Magnetic ma	ence/Engineering terials		. /
	The origin is electron- Unpaired electron, ode	•	
4 ++ ++ ++ ++	Radicals $\neg \sqrt[2]{\pi\nu}, No, No_x,$ $C_w^{2^{\dagger}} (d^{9})$	Degenerate AO/MO orbitals	02 4 4 Mu ²⁺ 44444 Gu ²⁺ 44444
	nagnetically isolated or electrons behaves as a '	_	
· · ·			
	H		

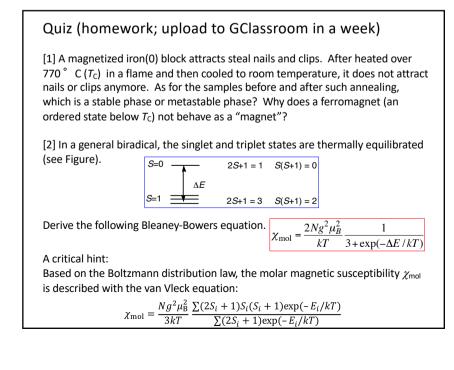












$\Delta \mathcal{L}_{T} \gtrsim kT$ (at low temperature)	
M <u>SMJ @xp (& MJ/MB Ho / KT)</u>	
Ng MB Zexp (g MJ, NB Ho/ET)	
It can be solved. Somewhat laborious but solvable.	
$\frac{1}{2} \frac{1}{m_{f}} \frac{1}{m_{g}} \frac{m_{g}}{m_{f}} \frac{1}{m_{g}} \frac{1}$	- 3/13Ho)
Mg=-J	hyperbolic trigonometric functions
DD 2 A and I'd por abth at	/ sinfix = 2(ex-ex)
$Nif Ark \in [, hill \in], there is a sum of the geometric sequence N_1 = \frac{e^{\pi i (1 - e^{-(x_2 + 1)\alpha})}{1 - e^{-\alpha}} sum of the geometric sequence$	$(\cosh x = \frac{1}{2}(e^{x}+e^{-x}))$
$\frac{e^{Ta} - e^{-(T+1)a}}{1 - e^{-a}} \frac{e^{\frac{a}{2}}}{e^{\frac{a}{2}}} = \frac{e^{(T+\frac{1}{2})a} - e^{-(T+\frac{1}{2})a}}{e^{\frac{a}{2}} - e^{-\frac{a}{2}}}$	$\frac{1}{2}a \left(sink(J+\frac{1}{2})a \right)$
numerator $5 = 1 - e^{-2} e^{-2} e^{-2}$ (tricky solution!)	(sinh 2
$\beta_2 = -Je^{-(-J)a_+}(-J+1)e^{-(-J+1)a_+}(-J+2)e^{-(-J+1)a_+}(-J+$	$2)a_{+in} + Je^{-Ja}$
$e^{-a}S_2 = -J e^{-(-J+1)a} + (-J+1)e^{-(J+1)a}$ $(1-e^{-a})f_2 = -Je^{+Ja} + e^{-(-J+1)a} + e^{-(-J+2)a} + \cdots + e^{-(-J+2)a}$	$z_{a+} = Je^{-(J+1)a}$
71次 e-(-J+1)a, 你我 e-a, 預致	25/7
sum of the geometric sequence	

 $\frac{(1 - e^{-a})}{N_{2}} = -J \left(e^{Ja} + e^{-(J+1)a} \right) + \frac{e^{-(J+1)b} \left(1 - e^{-Ja} \right)}{(1 - e^{-a})}$ $\frac{N_{2}}{N_{2}} = -J \frac{e^{Ta} + e^{-(J+1)a}}{1 - e^{-a}} + \frac{e^{(J-1)a} - e^{-(J+1)a}}{(1 - e^{-a})^{-}}$ $\frac{N_{2}}{N_{1}} = \left(-J \frac{e^{Ta} + e^{-(J+1)a}}{1 - e^{-a}} + \frac{e^{(J-1)a} - e^{-(J+1)a}}{(1 - e^{-a})^{-}} \right) \left(\frac{1 - e^{-a}}{e^{Ta} - e^{-(J+1)a}} \right)$ $= -J \frac{e^{Ja} + e^{-(J+1)a}}{e^{Ta} - e^{-(J+1)a}} + \frac{1}{1 - e^{-a}} \frac{e^{(J-1)a} - e^{-(J+1)a}}{e^{Ta} - e^{-(J+1)a}}$ $= -J \frac{e^{Ja} + e^{-(J+1)a}}{e^{Ta} - e^{-(J+1)a}} \cdot \frac{e^{Ja}}{e^{Ja}} + \frac{1}{1 - e^{-a}} \frac{e^{Ta} - e^{-Ta}}{e^{Ta} - e^{-(J+1)a}}$ = $-T \operatorname{coth} (J + \frac{1}{2})a + A$ As for a part of A, (tricky solution again!) $e^{\mathbf{T}\mathbf{A}} - e^{-\mathbf{T}\mathbf{A}} = \frac{1}{2} \Big\{ (e^{(\mathbf{I}+1)\mathbf{A}} + e^{\mathbf{T}\mathbf{A}} - e^{-\mathbf{T}\mathbf{A}} - e^{(\mathbf{I}+1)\mathbf{A}}) - (e^{(\mathbf{I}+1)\mathbf{A}} - e^{\mathbf{T}\mathbf{A}} - e^{-\mathbf{T}\mathbf{A}} - e^{(\mathbf{I}+1)\mathbf{A}}) \Big\}$ $=\frac{1}{2}\left\{\left(e^{\left(J+\frac{1}{2}\right)a}-e^{\frac{1}{2}\left(j+\frac{1}{2}\right)a}\right)\left(e^{\frac{a}{2}}+e^{\frac{a}{2}}\right)-\left(e^{\left(j+\frac{1}{2}\right)a}+e^{\frac{1}{2}\left(j+\frac{1}{2}\right)a}\right)\left(e^{\frac{a}{2}}-e^{\frac{a}{2}}\right)\right\}$ Accordingly. factorization (因数分解)

At the next	stage, the Curie law is proven, when <i> </i>
	$) = \frac{2J+1}{2J} \operatorname{coth} \frac{2J+1}{2J} \mathcal{R} - \frac{1}{2J} \operatorname{coth} \left(\frac{1}{2J} \mathcal{K}\right)$
	$= \frac{\alpha(e^{\alpha L} + e^{-\alpha \lambda})}{e^{\alpha L} - e^{-\alpha \lambda}} - \frac{b(e^{b \lambda} + e^{-b \lambda})}{e^{b \lambda} - e^{-b \lambda}} \left(h = \frac{27+1}{27}, h = \frac{1}{27}\right)$
Maclaurin expansion of the e ^x function 指数関数の展開	$= \frac{A\left\{1 + \frac{(a_{k})^{2}}{2!} + \frac{(a_{k})^{\gamma}}{q_{1}}\right\}}{\left\{A_{k} + \frac{(a_{k})^{2}}{3!} + \frac{(a_{k})^{\gamma}}{5!} + \cdots\right\}} \frac{\int\left\{1 + \frac{(b_{k})^{2}}{2!} + \frac{(a_{k})^{\gamma}}{q_{1}} + \frac{(a_{k})^{\gamma}}{q_{1}}\right\}}{\left\{A_{k} + \frac{(b_{k})^{2}}{3!} + \frac{(b_{k})^{\gamma}}{s_{1}} + \frac{(a_{k})^{\gamma}}{s_{1}}\right\}} A_{k} \ll l, \ b_{k} \ll l$
factorial <i>n</i> : <i>n</i> の階乗	$\stackrel{\sim}{=} A\left(\frac{1}{4x} + \frac{a_x}{2} - \frac{a_x}{6} - \frac{(a_x)^3}{12}\right) - b\left(\frac{1}{6x} + \frac{b_x}{3} - \frac{b_x}{6} - \frac{b_x}{12}\right)$
	$ = \frac{1}{\chi} + \frac{A^2 \chi}{3} \sim \frac{1}{\chi} + \frac{4 \chi}{3} $ $ = \frac{1}{3} \left(A^2 - 4^2 \right) \chi $
40	$= \frac{J+1}{3J} \times \frac{J+1}{3J} = \frac{gJ\mu_{B}H_{e}}{kT} = \frac{Ng^{2}\mu_{B}J(J+1)}{3kT} H_{0} (J+1)$
	$\gamma = \frac{M}{H} = \frac{N s^{2} M t^{2} T(J+1)}{3 kT}$ (Q.E.D) Curie's law
	1/ <i>T</i> effect

$A = \frac{e^{-\alpha}}{1 - e^{-\alpha}} \frac{e^{\frac{1}{2}\alpha}}{e^{\frac{1}{2}\alpha}} \frac{e^{T\alpha} - e^{-T\alpha}}{e^{T\alpha}} \frac{e^{\frac{1}{2}\alpha}}{e^{\frac{1}{2}\alpha}}$
$= \frac{1}{e^{\frac{1}{2}a} - e^{-\frac{1}{2}a}} \frac{(e^{Ja} - e^{-Jc})}{e^{(J+\frac{1}{2})a} - e^{-(J+\frac{1}{2})a}}$
$e^{\frac{1}{2}a} - e^{-\frac{1}{2}a} e^{(J+\frac{1}{2})a} - e^{-(J+\frac{1}{2})a}$
$= \frac{1}{2} \cdot \left\{ \frac{e^{\frac{\alpha}{2}} + e^{\frac{\alpha}{2}}}{e^{\frac{1}{2}\alpha} - e^{-\frac{1}{2}\alpha}} - \frac{e^{(J+\frac{1}{2})\alpha} + e^{-(J+\frac{1}{2})\alpha}}{e^{(J+\frac{1}{2})\alpha} - e^{-(J+\frac{1}{2})\alpha}} \right\}$
$= 2 \cdot \left(\frac{e^{\frac{1}{2}a} - e^{-\frac{1}{2}a}}{e^{\frac{1}{2}a} - e^{-\frac{1}{2}a}} \right)$
$= \frac{1}{2} \cosh \frac{a}{2} - \frac{1}{2} \coth (J + \frac{1}{2})a$
$\frac{S_2}{S_1} = -J \coth\left(T + \frac{1}{2}\right)\alpha + \left(\frac{1}{2} \operatorname{coth} \frac{\alpha}{2} - \frac{1}{2} \operatorname{coth} (T + \frac{1}{2})\alpha\right)$ $= \frac{1}{2} \operatorname{coth} \frac{\alpha}{2} - \frac{2J+1}{2} \operatorname{coth} \left(\frac{2J+1}{2}\alpha\right)$
to the beginning, $a = -\frac{g_{M_B}H_o}{f_e T}$
$\frac{M}{N_{f,MB}} = \frac{2J+i}{2} \operatorname{coth} \left(\frac{2J+i}{2J} \frac{\mathcal{H}_{b}H_{b}}{4\tau}J\right) - \frac{1}{2} \operatorname{coth} \left(\frac{1}{2J} \frac{\mathcal{H}_{b}H_{b}J}{4\tau}\right)$
No MB 2 Cour (2J kr) 2 Cour (2J kr)
$: M = N_{gJMb} \left[\frac{2J+1}{2J} \operatorname{coth} \left(\frac{2J+1}{2J} \times \right) - \frac{1}{2J} \operatorname{oth} \left(\frac{1}{2J} \times \right) \right]$
where $\chi = \frac{\mathcal{F}J\mathcal{M}_{B}H_{o}}{\mathcal{K}T}$ (end of derivation) [] = $B_{J}(x)$ Brillouin function

