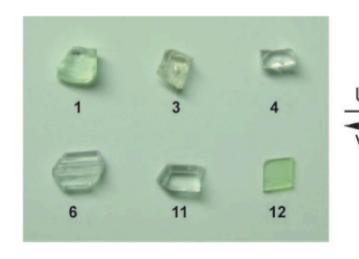

Solid sate chemistry ex.1) photochromic materials


Diarylethenes

open form (solid line) cross-conjugation

closed form (broken line) through-conjugation

M. Irie et al., Bull. Chem. Soc. Jpn., **2004**, 77, 195.

Solid sate chemistry ex.1) photochromic materials

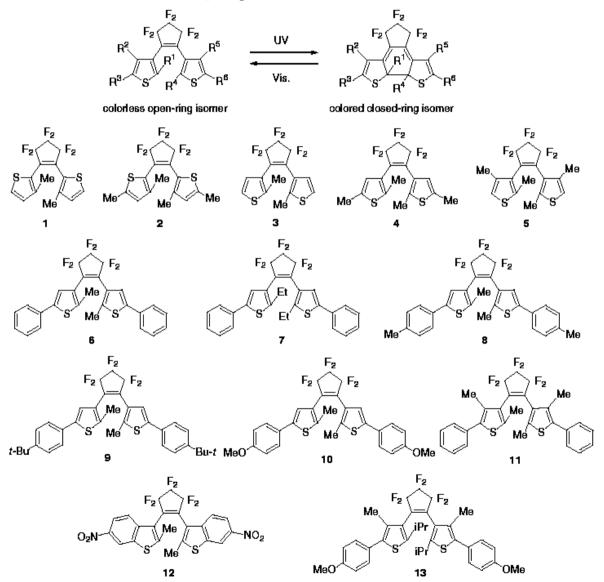
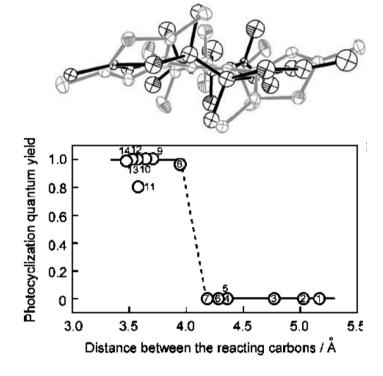
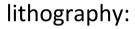
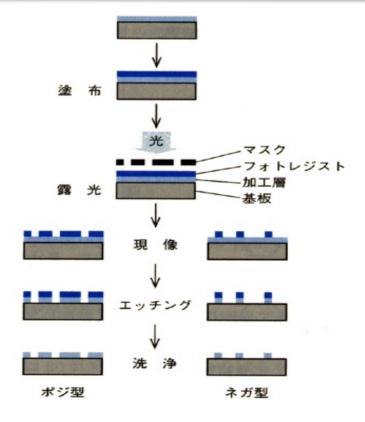



Fig. 4. Diarylethene derivatives showing single-crystalline photochromism.

Reaction – structure relation




M. Irie et al., Bull. Chem. Soc. Jpn., **2004**, 77, 195.

Solid sate chemistry ex.2) photoresist

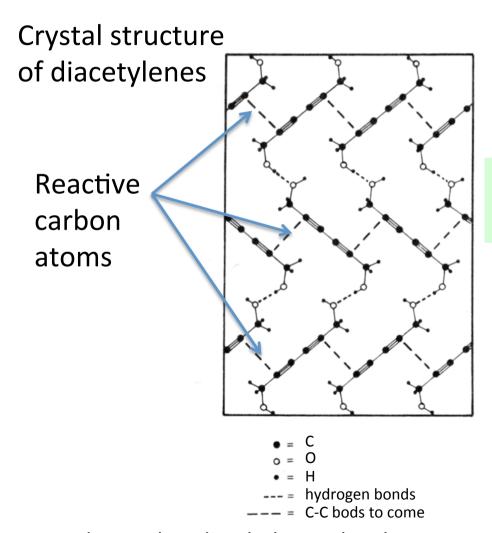
KPR (Kodak Co. Ltd.)

cross-linked polymers

substrate

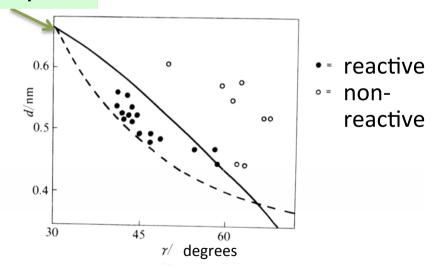
paint for masking

exposure


developing a photo

etching (positive/negative types)

wash


Solid sate chemistry

ex.3) photo-polymerization

Schmidt rule boundary

reaction scheme

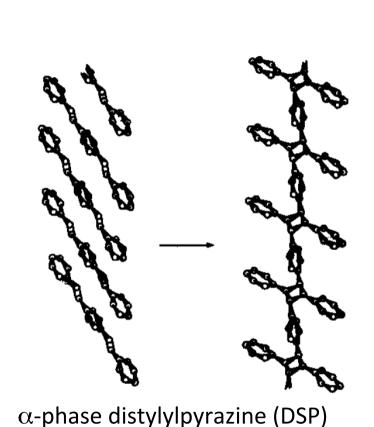
Reactivity – geometry relationship

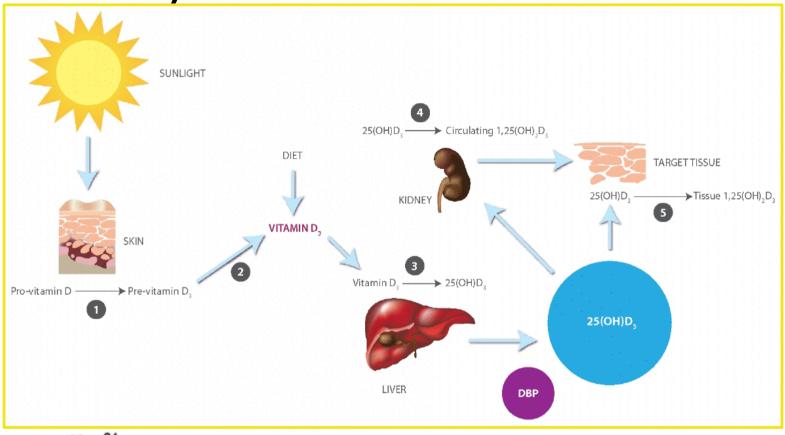
Hydrogen bonding helps molecular arrangemen suitable for photo-polymerization

"Molecular Crystals" by J.D.Wright

Solid sate chemistry

ex.3) photo-polymerization



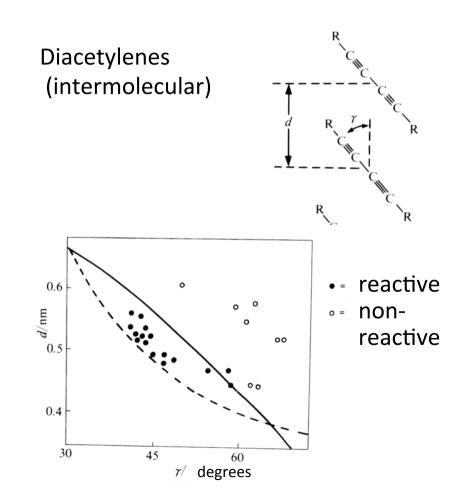

Table. The cell parameters of reactive DSPs

化合物 空間群		<i>α</i> (α)	b (β)	c (/nm) (γ) (/°)	二重結合間 距離/nm
2,5-ジスチリ/ (α相)	ルピラジン	(DSP)*			
monomer polymer	Pbca	2.0638 1.836	0.9599 1.088	0.7655 0.752	0.3939
1,4-フェニレ	ンジアクリ	ル酸ジメチ	ルエステル	(PDAMe) •	••
monomer	$P\bar{1}$	0.7148 (98.97)	0.8382 (116.85)	0.5844 (78.06)	0.3957
polymer	P 1	0.782 (107.8)	0.742	0.604	
1,4-フェニレン	ンジアクリ	ル酸ジフェ	ニルエスティ	レ(PDAPh)) * *
monomer	$P 2_1/c$	0.6917	1.8584 (101.87)	0.7557	0.3917
polymer	P 21/c	0.750	1.73 (102.0)	0.750	
*DSP :) →CH=C	:н-{ <mark>N-</mark>	CH=CH		
**PDAMe: (Ph)	McOOC - (Ph)	СН∗СН—	С Н	= CH - COO (i	Me Ph)

Explain why $2\pi + 2\pi$ cycloaddition reactions are allowed in photo-process and forbidden in thermal-process.

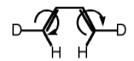
Solid sate chemistry ex.2) vitamin D3

Vitamin-D deficiency rickets (くる病), a disorder that becomes apparent during infancy or childhood, is the result of insufficient amounts of vitamin D in the body. The deficiency of vitamin D may be caused by poor nutrition, a lack of exposure to the sun, or


Schmidt rule (0.4 nm rule)

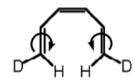
Photoreaction requires "parallel arrayed double bonds" and "the interatomic distance within 0.4 nm."

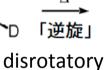
G. M. J. Schmidt, Pure Appl. Chem. 1971, 27, 647.

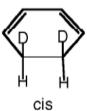

Diarylethenes (intramolecular) Photocyclization quantum yield 0.8 0.6 0.4 0.2 3.5 3.0

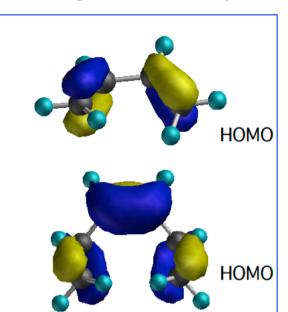
Distance between the reacting carbons / Å

A summarized memo from organic chemistry textbook.


Pericyclic reactions (in polyenes)

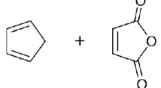




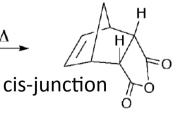

conrotatory

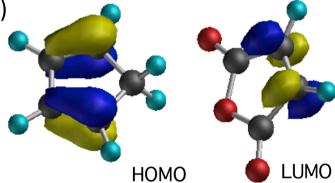
Selectivity

 $\begin{array}{ll} \text{number of} & = \\ \pi \text{ electrons} & \end{array}$


4 n

therm. conrot.


4 n + 2therm. disrot.


photo. disrot. photo. conrot.

Cycloaddition reactions (Diels-Alder reaction)

Selectivity for $i+j \pi$ electron systems

 $\begin{array}{c} \text{number of} \\ \pi \text{ electrons} \end{array}$ therm. forbidden photo. allowed 4 n 4 n+2 therm. allowed photo. forbidden Motivation and stepwise goals:

Run a Hückel MO program in your PC.

Clarify the properties and reactivities of polyenes and aromatics.

Explain the selectivity in pericyclic reactions and cycloadditions.

Predict properties of C₆₀ and related molecules.

How to make a secular equation (a case study on benzene)

3-1 永年方程式の作り方

いま、ベンゼンを例にとってその永年方程式を作って見よう。 各頂点にあ

る炭素原子に 左図のように 1,2…6 の番号をつける。 すると理屈

は一応あとまわしにして、次のような6個の斉1次連立方程式が

書ける.

linear simultaneous equations based on the numbering of 2p, AOs (χ_i).

$$c_1\lambda = c_2 + c_6 \setminus c_2\lambda = c_1 + c_3$$

$$c_3\lambda = c_2 + c_4 \setminus c_4\lambda = c_3 + c_6$$

$$c_5\lambda = c_4 + c_6$$

$$c_6\lambda = c_1 + c_5 \wedge c_6$$

(2.20)

 c_i is a coefficient of χ_i in LCAO MO ϕ .

ここで c_1 , c_2 ,… c_6 は、ベンゼンの分子軌道 φ を各炭素原子の $2p\pi$ 原子軌道の 1 次結合で

$$\varphi = c_1 \chi_1 + c_2 \chi_2 + \cdots + c_6 \chi_6 \qquad (2.21)$$

と表わしたときの係数である。 λ についてはあとでその意味は明らかになるので、 $\lambda=(\varepsilon-\alpha)/\beta$ という値であることだけをしるしておこう。

(2.20) 式を書きおろす要領としては、たとえば1の原子についてはc λ と

し、これが隣の原子の原子軌道の係数の和に等しいとして $c_1\lambda=c_2+c_6$ という式を作る。以下同様にして、隣の原子だけを考え他は無視すると、各原子について同じような式が作られるから、ベンゼンの場合(2.20)式が直ちに書きおろせることになる。

without reason at this stage!

2節でも述べたように、LCAO MO 法においては 1 電子の有効ハミルトニアンを h とすると、分子軌道 φ に対するエネルギー ε は

$$\varepsilon = \frac{\int \varphi \boldsymbol{h} \varphi d\tau}{\int \varphi \varphi d\tau}$$
 ε is an expected energy for ϕ . (2.23)

で与えられ、この式中のφに(2.21)式を代入すると

Substitute ϕ of (2.21) into (2.23).

$$\varepsilon = \frac{(c_1^2 \alpha_1 + c_2^2 \alpha_2 + \dots + c_6^2 \alpha_6) + 2(c_1 c_2 \beta_{12} + c_1 c_3 \beta_{13} + \dots)}{(c_1^2 + c_2^2 + \dots + c_6^2) + 2(c_1 c_2 \beta_{12} + c_1 c_3 \beta_{13} + \dots)}$$
(2.24)

となる。ただしてこで α_r , β_{rs} , S_{rs} は

 α : Coulomb integral

 β : resonance integral

S: overlap integral

$$\alpha_{r} = \int \chi_{r} h \chi_{r} d\tau$$

$$\beta_{rs} = \int \chi_{r} h \chi_{s} d\tau$$

$$S_{rs} = \int \chi_{r} \chi_{s} d\tau.$$

$$\begin{pmatrix} r = 1, 2, \dots 6 \\ s = 1, 2, \dots 6 \end{pmatrix}$$
(2.25)

なる積分を表わし、それぞれクーロン積分、共鳴積分、重なり積分と呼ばれる ととは2節で説明したとおりである。なお、(2.24)式を導く際、各原子軌道関 数は規格化されているとして

 χ_i is normalized.

$$\int \chi_r \chi_r d\tau = S_{rr} = 1 \tag{2.26}$$

という条件を使い、また β_{rs} が β_{sr} に等しいことも用いている。またベンゼン の各炭素原子はすべて等価であるから、クーロン積分はすべて等しく、かつ炭素、炭素間の距離が皆等しいので共鳴積分も同じ値になることは容易に理解できる。すなわち、これらを今それぞれ α , β と置くと

Hückel approximation on $\boldsymbol{\alpha}.$

Hückel approximation on β .

$$\alpha_1 = \alpha_2 = \cdots = \alpha_6 = \alpha$$

$$\beta_{12} = \beta_{23} = \cdots = \beta_{56} = \beta_{61} = \beta$$

$$(2.27)$$

となる。 α , β はベンゼン分子についてのクーロン積分,共鳴積分と呼ばれるものである*。 これらをパラメーターにしてエネルギーを表わすのは非常に簡単でしかも便利であり,この方法を π 電子の **Hückel 法**という。

さて、(2.24)式中の隣合わない原子軌道間の共鳴積分はかなり小さくなるので(距離が大きくなって)、ゼロと近似しても結果には大きな影響はないだろう。したがって

Hückel approximation on β #2.

$$\beta_{13} = \beta_{14} = \beta_{24} = \cdots = 0 \tag{2.28}$$

とし、また重なり積分はすべて無視する、すなわち

Hückel approximation on S.

$$S_{12} = S_{13} = S_{14} = S_{23} = S_{24} = \cdots = 0$$
 (2.29)

上のような近似を置くと、(2.24)式は

$$\varepsilon = \frac{(c_1^2 + c_2^2 + \dots + c_6^2)\alpha + 2(c_1c_2 + c_2c_3 + \dots)\beta}{c_1^2 + c_2^2 + \dots + c_6^2}$$
(2.30)

となってかなり簡単な形になる。 2節で述べたように、 ϵ が極小値をとるため の条件は

Energy-minimizing conditions:

$$\frac{\partial \varepsilon}{\partial c_r} = 0 \qquad (r=1, 2, \dots 6) \tag{2.31}$$

であるからこれより次の6個の式が得られる。

Combining (2.30) and (2.31) gives:

$$c_{1}(\alpha-\varepsilon) + c_{2}\beta + c_{6}\beta = 0$$

$$c_{1}\beta + c_{2}(\alpha-\varepsilon) + c_{3}\beta = 0$$

$$c_{2}\beta + c_{3}(\alpha-\varepsilon) + c_{4}\beta = 0$$

$$c_{3}\beta + c_{4}(\alpha-\varepsilon) + c_{5}\beta = 0$$

$$c_{4}\beta + c_{5}(\alpha-\varepsilon) + c_{6}\beta = 0$$

$$c_{1}\beta + c_{5}\beta + c_{6}(\alpha-\varepsilon) = 0$$

$$(2.32)$$

これらの各式の両辺を Bで割って移項すると

Rectifying (2.32) gives:

$$c_{2} + c_{6} = \frac{\varepsilon - \alpha}{\beta} c_{1}$$

$$c_{1} + c_{3} = \frac{\varepsilon - \alpha}{\beta} c_{2}$$

$$c_{2} + c_{4} = \frac{\varepsilon - \alpha}{\beta} c_{3}$$

$$c_{3} + c_{5} = \frac{\varepsilon - \alpha}{\beta} c_{4}$$

$$c_{4} + c_{6} = \frac{\varepsilon - \alpha}{\beta} c_{5}$$

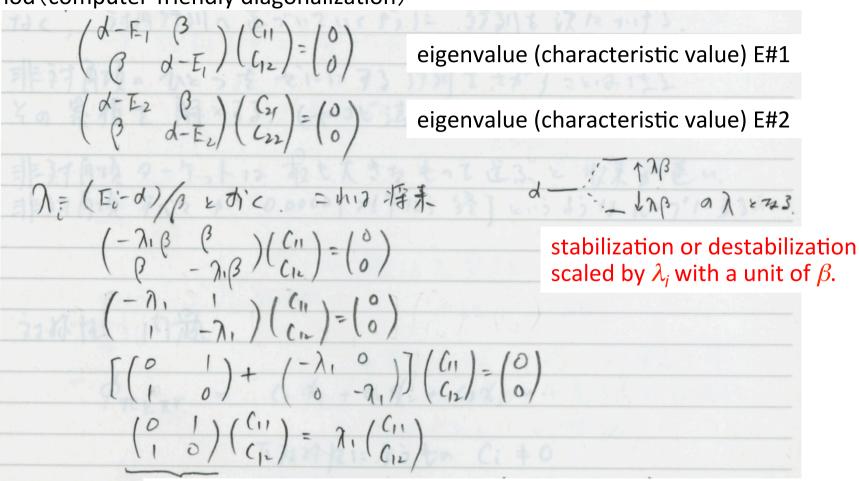
$$c_{1} + c_{5} = \frac{\varepsilon - \alpha}{\beta} c_{6}$$

or in a matrix expression,

$$\begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
c1 \\
c2 \\
c3 \\
c4 \\
c5 \\
c6
\end{pmatrix} = \lambda
\begin{pmatrix}
c1 \\
c2 \\
c3 \\
c4 \\
c5 \\
c6
\end{pmatrix}$$

となる. (2.33)式において $(\varepsilon-\alpha)/\beta$ を λ とおいたものが (2.20)式にほかな らない. まえに天下り式にいきなり書きおろされた(2.20)式の意味が, これで はっきりとわかっていただけたことと思う。またそのとき保留してあったλの

clarified as:


The meaning of λ has been 意味も明らかになったわけである. つまり λ は軌道エネルギー ϵ を

$$\varepsilon = \alpha + \lambda \beta \tag{2.34}$$

という形に書き表わしたときの 8の係数になっていることがわかる.

米沢貞治郎、 「量子化学入門」 (化学同人)

Jacobi method (computer-friendly diagonalization)

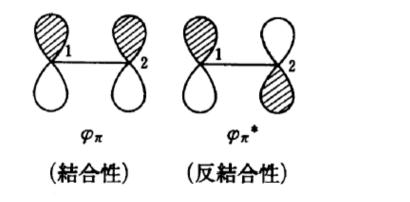
 λ_1 is an eigenvalue of this matrix. The number of λ s is 2.

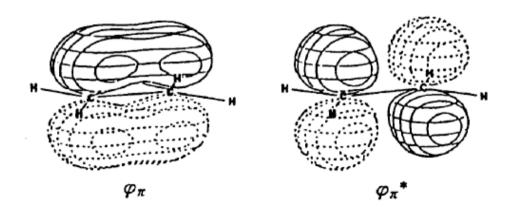
Jacobi method

ethod
$$\frac{1}{3}$$
 も $\frac{1}{3}$ $\frac{1}$

From the textbook of the third-year exercise class.

演習 計算化学

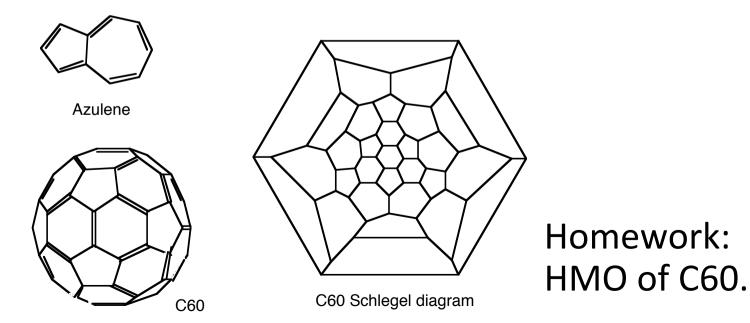

π MO of ethylene: CH₂=CH₂


エチレンの π と π^* のMOは、 χ_1,χ_2 をそれぞれの炭素の χ_{2pz} とすると、

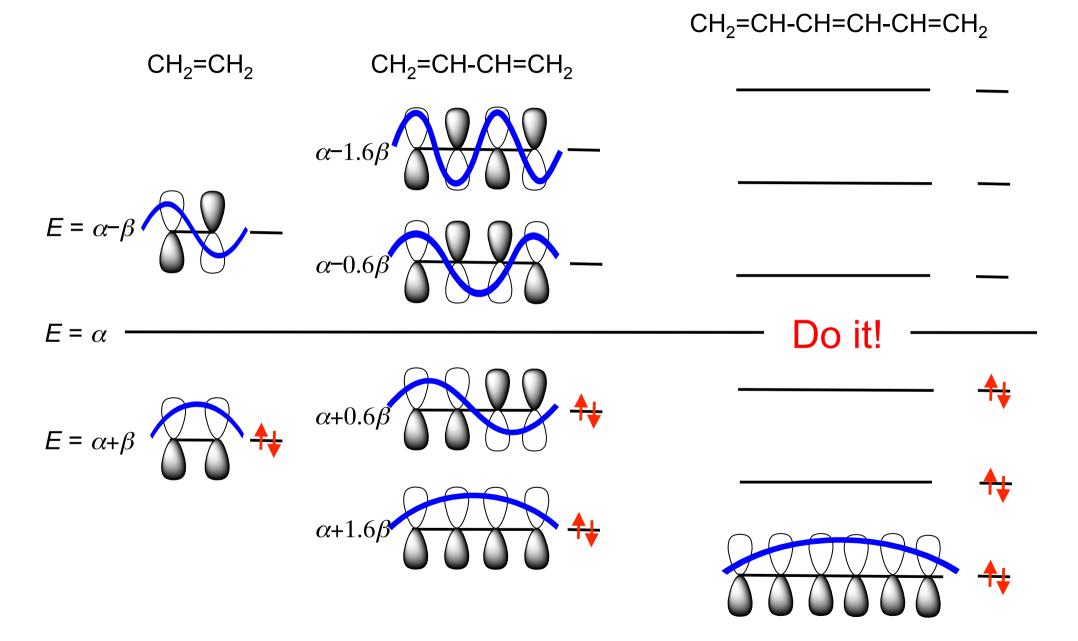
$$\varphi_2 = {\varphi_{\pi}}^* = 0.7071 \ \chi_1 - 0.7071 \ \chi_2$$

$$\varphi_1 = \varphi_{\pi} = 0.7071 \ \chi_1 + 0.7071 \ \chi_2$$

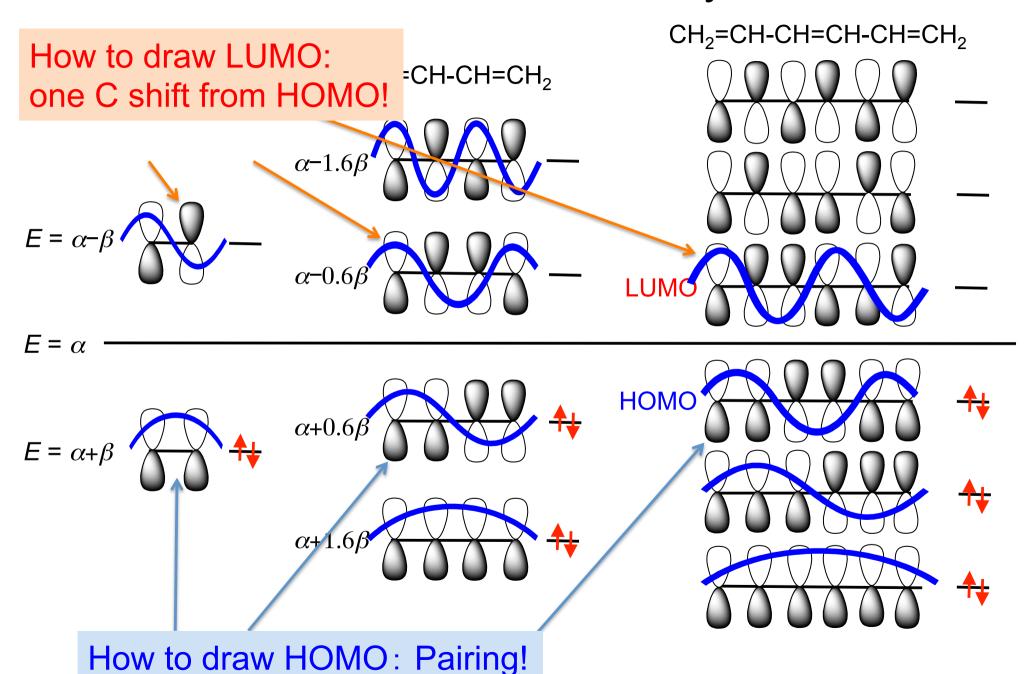
図1に、黒板に描くときの表現法と、コンピュータに描かせるときの等値曲面法を示した。


(a) 慣用的表現 handwriting way

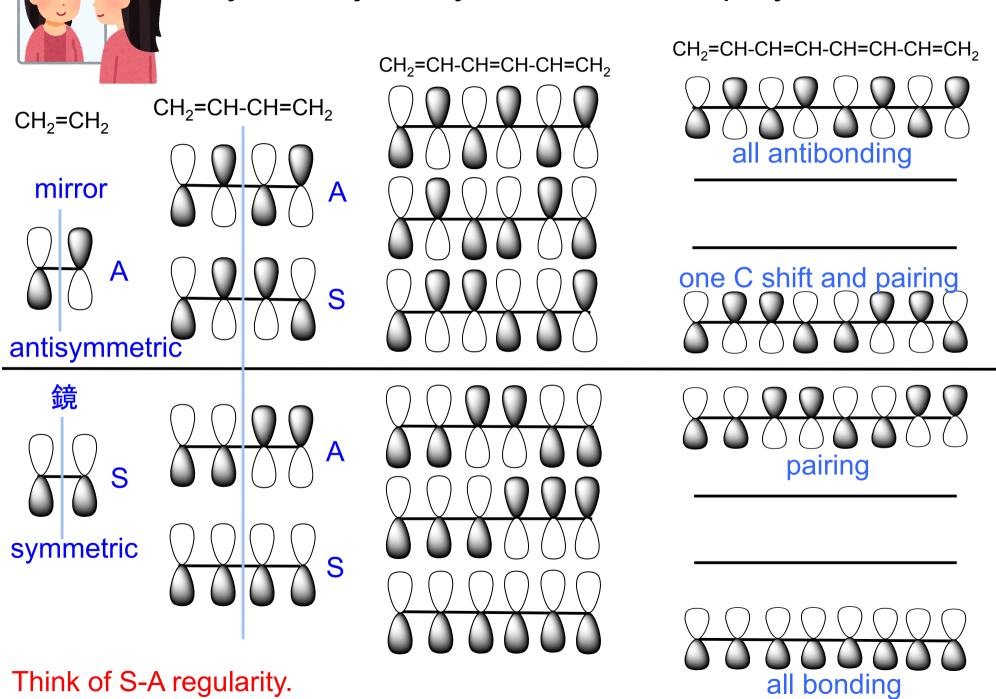
(b) 等値曲面による表現 MO software way


図1 エチレンの π, π* 軌道

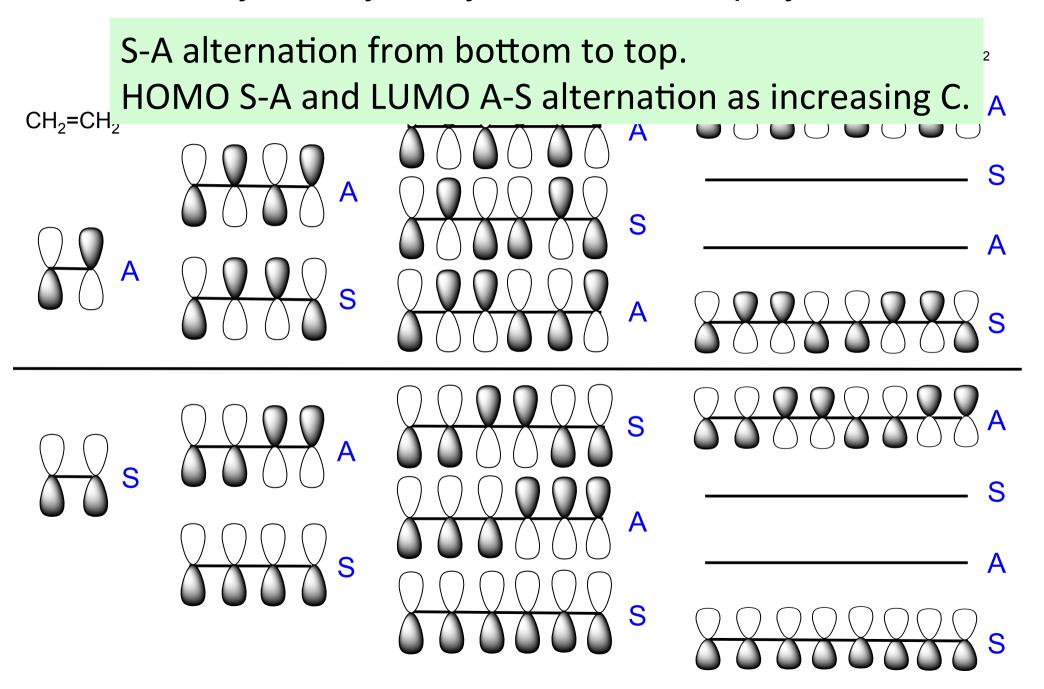
For a benzene input file;


Try ethylene, 1,3-butadiene, 1,3,5-hexatriene, naphthalene, anthracene, azulene, pyrene, benzyl radical/cation/anion, fullerene[60], fullerene[70] etc.

Hückel MO on Linear Polyenes



Hückel MO on Linear Polyenes



Symmetry analysis of HMO on polyenes

Think of S-A regularity.

Symmetry analysis of HMO on polyenes

Hückel MO general solution: Frost-Musulin's method

Cyclic polyenes

$\varepsilon_j = \alpha + 2\beta \cos \frac{2\pi j}{n}$

$$\psi_j = \sum_{\mu=1}^n C_{j\mu} \phi_\mu$$

$$C_{j\mu} = \sqrt{\frac{1}{n}} \exp[i2\pi j\mu/n]$$

$$j=0, \pm 1, \pm 2, \dots, \pm \frac{n}{2}$$

$$i = \sqrt{-1}$$

with a corner at the bottom.

Linear polyenes

with a corner at the bottom

$$H\psi_j = \varepsilon_j H_j$$

$$\psi_j = \sum_{\mu=1}^n C_{j\mu} \phi_{\mu}$$

$$\varepsilon_j = \alpha + 2\beta \cos \frac{j\pi}{n+1}$$

$$C_{j\mu} = \sqrt{\frac{2}{n+1}} \sin \frac{j\mu\pi}{n+1}$$

$$j=1, 2, 3, \dots, n$$

Draw an $r = 2\beta$ circle

(大学院有機化学上、 講談社サイエンティフィク)

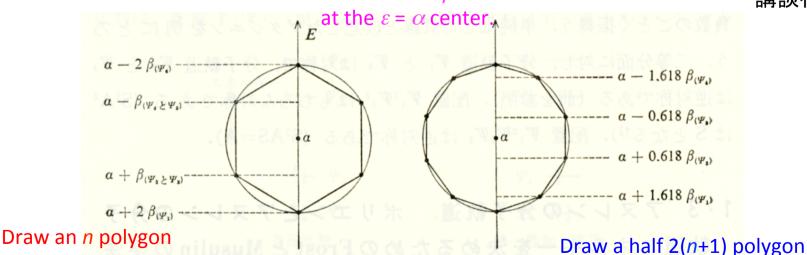


図 1・5 Frost と Musulin の方法によるベンゼンとブタジエンの分子軌道のエネルギー図

(Woodward-Hoffman rule、 N.T. Anh、東京化学同人)

A typical output file from molecular-orbital calcula	ation softwares.
ORbital energy and LCAD as	est.
Cii Az	Eigenvalue
C ₁₂ C ₁₃	Coefficients for the i th eigenvalue
	The sum of C_{ii}^2 equals to unity.
bond order and electron density	THE TOTAL PARTY
	CARRIEL MILL
The state of the s	je even - Gir-Cju
	1
	- electron dousity, gr
Fig. 12 To The Part of the Par	THE SECTION AND THE REAL PROPERTY OF THE PERTY OF THE PER
The π bond order between	atoms i and j.
To get "a chemic	al bond order", add 1 due to the σ bond.
330	
Prs = 2 I Cri Csi	Calculated from the same loop.
br = 2 \(\int \text{Cri} \)	

Reaction coefficients for electrophilic, nucleophilic, and radical reactions. $fr^{(E)} = 2 (Cr^{HoM0})^2$ $fr^{(N)} = 2 (Cr^{LOM0})^2 + (Cr^{LOM0})^2$ $fr^{(R)} = (Cr^{HoM0})^2 + (Cr^{LOM0})^2$ Only the frontier orbitals regulate reactivity. As for radicals, Spin dlusily

No spin direction (α, β) in the Hückel level. The number of electron is 1 in SOMO.

Selectivity of reactions of naphthalene 2 1 9 8 Hückel results

	resuits							3 [!]		- // (
ORBITAL ENERGIES, OCCUPANCIES, AND LCAO COEFFICIENTS									10	<u> </u>
									4	5
2.3028	1.6180	1.3028	1.0000	0.6180	-0.6180	-1.0000	-1.3028	-1.6180	-2.3028	
2	2	2	2	2	0	0	0	0	0	_
										_
-0.3006	0.2629	0.3996	0.0000	-0.4253	0.4253	0.0000	-0.3996	-0.2629	0.3006	_
-0.2307	0.4253	0.1735	0.4082	-0.2629	-0.2629	-0.4082	0.1735	0.4253	-0.2307	_
-0.2307	0.4253	-0.1735	0.4082	0.2629	-0.2629	0.4082	0.1735	-0.4253	0.2307	_
-0.3006	0.2629	-0.3996	0.0000	0.4253	0.4253	0.0000	-0.3996	0.2629	-0.3006	
-0.3006	-0.2629	-0.3996	0.0000	-0.4253	-0.4253	0.0000	-0.3996	-0.2629	-0.3006	
-0.2307	-0.4253	-0.1735	0.4082	-0.2629	0.2629	0.4082	0.1735	0.4253	0.2307	
-0.2307	-0.4253	0.1735	0.4082	0.2629	0.2629	-0.4082	0.1735	-0.4253	-0.2307	
-0.3006	-0.2629	0.3996	0.0000	0.4253	-0.4253	0.0000	-0.3996	0.2629	0.3006	
-0.4614	0.0000	0.3470	-0.4082	0.0000	0.0000	0.4082	0.3470	0.0000	-0.4614	
-0.4614	0.0000	-0.3470	-0.4082	0.0000	0.0000	-0.4082	0.3470	0.0000	0.4614	
Pi BOND (ORDER AND	ELECTRO!	N DENSITY			$ ho_{\pi}$ is s	hown in	a diagor	nal elem	ent.
						7 50		_		
1.0000	0.7246	0.0000	-0.3623	0.0849	0.0000	-0.1699	0.0000	0.5547	0.0000	
0.7246	1.0000	0.6032	0.0000	0.0000	0.1560	0.0000	-0.1699	0.0000	-0.2409	
0.0000	0.6032	1.0000	0.7246	-0.1699	0.0000	0.1560	0.0000	-0.2409	0.0000	
-0.3623	0.0000	0.7246	1.0000	0.0000	-0.1699	0.0000	0.0849	0.0000	0.5547	
0.0849	0.0000	-0.1699	0.0000	1.0000	0.7246	0.0000	-0.3623	0.0000	0.5547	
0.0000	0.1560	0.0000	-0.1699	0.7246	1.0000	0.6032	0.0000	-0.2409	0.0000	
-0.1699	0.0000	0.1560	0.0000	0.0000	0.6032	1.0000	0.7246	0.0000	-0.2409	
0.0000	-0.1699	0.0000	0.0849	-0.3623	0.0000	0.7246	1.0000	0.5547	0.0000	
0.5547	0.0000	-0.2409	0.0000	0.0000	-0.2409	0.0000	0.5547	1.0000	0.5182	All
0.0000	-0.2409	0.0000	0.5547	0.5547	0.0000	-0.2409	0.0000	0.5182	1.0000	unity

Reactions occur between a nucleophile and an electrophile.

$$Nu + EI \rightarrow Nu-EI$$

In a naphthalene molecule, every carbon atom carries a completely neutral charge, because ρ_{π} = 1 appears at every carbon.

Both electrophilic and nucleophilic reagents are ready to bond at the 1-(α -) position of naphthalene.

Charge is NOT a reason for the selectivity.

Selectivity of reactions of naphthalene 2 7

Hückel results

										3 🤨	
ORBITAL E	ENERGIES,	OCCUPANO	DIES, A	ND LCAO C	OEF	FIC:	IENTS				10
											4
2.3028	1.6180	1.3028	1.0	000 0.61	30	-9	√18 −1.0	0000	-1.3028	-1.6180	-2.3028
				4							
_ 2	2	2		- V	2		111	0	0	0	9
				FR(E)			FR(N)				
-0.3006	0.2629	0.3996	0.0	0.3618	3	(0.3618	000	-0.3996	-0.2629	0.3006
-0.2307	0.4253	0.1735	0.4	0.1382	9	-(0.1382	082	0.1735	0.4253	-0.2307
-0.2307	0.4253	-0.1725	0.4	0.1382	9	-(0.1382	082	01735	-0.4253	0.2307
-0.3006	0.2629	-0.3996	0.0	0.3618	3	(0.3618	000	-0.3996	0.2629	-0.3006
-0.3006	-0.2629	-0.3996	0.0	0.3618	3	-(0.3618	000	-0.3996	-0.2629	-0.3006
-0.2307	-0.4283	-0.1735	0.4	0.1382	9	(0.1382	082	0.1.735	0.4253	0.2307
-0.2307	-0.4253	0.1735	0.4	0.1382	9	(0.1382	082	0.1735	-0.4253	-0.2307
-0.3006	-0.2629	0.3996	0.0	0.3618	3	-(0.3618	000	-0.3996	0.2629	0.3006
-0.4814	0.0000	0.3470	-0.4	0	00	(0	982	0.3470	0.0000	-0.4614
0.4614	0.0000	-0.3470	-0.4	0	00	(0	082	0.3470	0.0000	0.461.4

Frontier electron densisty (orbital density)

"Look at the frontier (HOMO and LUMO) only."

Electrophilic reaction coefficient (when a reagent is electrophilic)

$$fr = 2C_{1(HOMO)}^{2}$$

Nucleophilic reaction coefficient (when a reagent is nucleophilic)

$$fr_1^{N} = 2C_{1(LUMO)}^2$$

[from Fukui's work]