表:エチレンの問題

問1 クーロン積分、共鳴積分

間 2 (a) クーロン積分 α は全て等しい (b) 共鳴積分 β はすべて等しい (c) 隣り合っていない AO 同士の共鳴積分はゼロ (d) 重なり積分 S をゼロ

問 3 、 4 、 5 松林著「化学結合の基礎」、p.200 にある取り扱いに準じる。ただし、S=0 としてよい。 問 6 2 $\alpha+2$ β

<u>表:直線と三角のH₃+の問題</u>

問4

問 1 H_{11}, H_{22}, H_{33} 問 2 H_{12}, H_{23} 問 3 H_{12}, H_{23}, H_{31}

$$\begin{pmatrix} x & 1 & 0 \\ 1 & x & 1 \\ 0 & 1 & x \end{pmatrix} \quad \begin{pmatrix} x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \end{pmatrix}$$

問5 たすきがけ法による、三次方程式化、3つの解を得る。

 $E = \alpha - x\beta$ の形になる。(A) x = 1.414, 0, -1.414; (B) x = -2, 1, 1

問 6 (A) 全 E=2 $\alpha+2.828$ β (B) 全 E=2 $\alpha+4$ β よって、(B) が安定 (準位図を描いて電子を配置)

問7 (A) 全 $E = 3 \alpha + 2.828 \beta$ (B) 全 $E = 3 \alpha + 3 \beta$ よって、(B) が安定

裏【1】アリルアニオンの問題 ぜひ、 ϕ_1 , ϕ_2 , ϕ_3 のローブの絵を描いて考えてみて下さい

- (1) π電子数 4、占有軌道は(下から) 2個
- (2) π 電子密度 端: 1.500 ($2C_{11}^2 + 2C_{21}^2$)、中: 1.000 ($2C_{21}^2 + 2C_{22}^2$)
- (3) π結合次数 端中間: 0.707 ($2C_{11}C_{12}+2C_{21}C_{22}$)、端端間: -0.500 ($2C_{11}C_{13}+2C_{21}C_{23}$)
- (4) 求電子試薬に対する反応性指数: 端:1.000 $(2C_{21}^2)$ 、中:0.000 $(2C_{22}^2)$ (これは HOMO だけの π 電子密度を計算することに等しい。Frontier orbital 論の一つの利用方法)

裏問2エチレンとブタジエンの問題 ぜひ、 $\phi_1,\ \phi_2,\ \phi_3,\ \phi_4$ のローブの絵を描いて考えてみて下さい

(a)
$$\begin{pmatrix} x & 1 & 0 & 0 \\ 1 & x & 1 & 0 \\ 0 & 1 & x & 1 \\ 0 & 0 & 1 & x \end{pmatrix},$$
 (b)
$$c^2 + d^2 + d^2 + c^2 = 2(c^2 + d^2) = 1$$

- (c) ブタジエンの全エネルギーからエチレンの全エネルギーの 2 倍を差し引く。 0.472β
- (d) 炭素1に対しても、2に対しても、 $2c^2+2d^2$ となり、(b) から1となる。
- (e) 炭素 1-2 間: 2cd+2dc = 4cd、炭素 2-3 間: $2(d^2-c^2)$
- (f) (エチレンの LUMO と ブタジエンの HOMO の対称性が一致することを示せば良い)

裏【2】

(順に)増え、減る、上昇、膨張、小さく、大きく(EA の符号の定め方による)、求電子試薬、高め、活性化、下降、不活性化、向上する

考え方:核からのクーロン引力が電子の軌道の安定化をもたらし、他の電子からの斥力が不安定化をもたらす。ある分子に対して、陰イオンにしたり、電子供与基を結合することにより、HOMO も LUMO も軌道準位が引き上げられる傾向があり、求電子試薬との反応性が向上する。陽イオンにしたり電子求引基を結合すると、逆に HOMO も LUMO も下がる。求核試薬との反応性が向上する。