- (1) KCl の核間距離は 3.14 Åである。Slater の規則(教科書 p.43)を用いて、それぞれのイオ ンの半径を求めよ。
- (2)2・1 Slater の規則を用いて、次の原子のしゃへい定数、有効核電荷、第一イオン 化エネルギーを計算せよ.

(1) $_{19}K$, (2) $_{23}V$, (3) $_{5}B$, (4) $_{55}C_{8}$

- 異種核からなる二原子分子には極性が認められる。HF 気体の双極子モーメントは 6.08×10⁻³⁰ (3)*Cm であり、原子間距離は 92.6 pm であった。この結合におけるイオン性を求めよ。なお、 電気素量は 1.602×10⁻¹⁹ C である。
- 次表の結合エネルギー D を用いて、H 原子と Cl 原子の電気陰性度を求めよ。

ただし、Fの電気陰性度は 4.0 とする.

表 2.5

	H_2	F ₂	Cl2	HF	HC1
$D[kJ \text{ mol}^{-1}]$	436	155	243	566	431

結合エネルギーのうち、共有 結合部分を求める必要がある。 このとき、相加平均を使って 下さい。配布したプリント参 照のこと。(相乗平均を用い る流儀もあるが、違いはわず かである)。

次の各イオンの磁気モーメント(スピンのみ)をボーア磁子単位で算出せよ。 (5)(まず、1s² 2s² ... の様式に従って、電子配置を記してから)

- (i) $_{47}Ag^+$ (ii) $_{28}Ni^{2+}$
- (iii) ₂₆Fe²⁺
- O_2 の分子軌道の電子配置を、 σ_{1s}^2 … の様式に従って記せ。次に O^2 がビラジカルであること (6)を説明せよ。酸素は8番原子である。
- Mo₂ は6重結合を持つとされている。関係する軌道を図示し、電子配置を示せ。 (7)参考: 42Mo の基底電子配置は、[Kr] 4d⁵ 5s¹ (4d と 5s において、Hund 則が支配的になった結果である)
- VSEPR (価電子殻電子対反発)に基づいて、分子構造を予想せよ。 (8)*BCl₃, NCl₃, SCl₂
- (i) アレン (H₂C=C=CH₂) の中央の炭素は結合角が 180°である。両端の水素の空間的配置が (9)わかるように分子構造を描け。その際、中央の炭素の混成状態を明らかにして、π結合の発生 する様子を図示すること。unique axis(この場合は分子長軸)をz軸に選ぶ習慣がある。 (ii) CO。やケテン(H₂C=C=O)は、アレンと『等電子的(isoelectronic)』である。酸素原子 の混成状態を明らかにして、その非共有電子対の存在を、空間的配置がわかるように描け。
- (10)次の事柄を、混成軌道の s 性パーセンテージという概念を用いて説明せよ。 (i) 1,3-ブタジエンの中央の C-C 結合は、ブタンのそれより短い。(半径に言及) (ii) アセチレンはアセチリド (カルボアニオンの一種) を作りやすい。 (電気陰性度に言及)
- メモ: *) 「理工系のための化学基礎」 (第五版) (3) p. 87、(8) p.83-84、も参照されたい。