原子番号と元素記号の対応は、Z=1(H)から36(Kr)まで順に以下の通りである。

H, He, Li, Be, B, C, N, O, F, Ne, Na, Mg, Al, Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Kr.

- 【1】 VSEPR に基づいて、(i) CH₃(メチル陰イオン), (ii) ClO₃-, (iii) O₃の分子構造を予想せよ。
- 【2】14族元素のダイヤモンド構造をもつ単体結晶について、格子定数、結合解離エネルギー、バンドギャップ Eg は右表のようになっている。

表	第 14 族のダイヤモンド構造をもつ元素に見られる周期的な傾向
---	---------------------------------

元 素	格子定数/ Å	結合解離エネルギー/kJ mol-1	E_{g}/eV
C(ダイヤモンド)	3.57	346	5.4
Si	5.43	222	1.1
Ge	5.66	188	0.66
α-Sn	6.49	146	0.1

- (a) 原子間距離と共有結合の強さの関係を記し、そのようになることの理由を簡潔に述べよ。
- (b) 結合解離エネルギー と Eg の関係を記し、そのようになることの理由を簡潔に述べよ。
- (c) 共有結合性結晶と金属結合性結晶は、それぞれ Eg の大きさとどのように関連づけられるか。
- (d) 一般に結晶を加圧すれば格子体積は小さくなる。設問 (a,b) を参考にして、Ge 結晶を加圧したとき、Eg にどのような変化が見られるかを予想せよ。
- 【3】次の表のデータを用いて、LiF 結晶の格子エネルギーを求めよ。

	生成熱 kJ mol ⁻¹	解離熱 kJ mol ⁻¹	気化熱 kJ mol ⁻¹	電子親和力 kJ mol ⁻¹	イオン化エネルギー kJ mol ⁻¹
LiF	-616.9				
Li			+160.7		+520.5
F_2		+157.8			
F				+328.0	

[4]

- (a) Cr の (ア) 原子および、(イ) 2価陽イオンの基底電子配置を、それぞれ $1s^2$ … の書式に従って記せ。
- (b) $[Cr_2(CH_3CO_2)_4(H_2O)_2]$ (右図) の Cr^{2+} 一 間は四重結合であるという考え方がある。18 電子則に基づいて、これを説明せよ。
- (c) この化合物について、分子軌道法によっても Cr^{2+} - Cr^{2+} 間が四重結合であることを示すことができる。(P) Cr-Cr 方向を z 軸にとり、3d 原子軌道同士の重なりを図示しつつ、 $\sigma,\pi,\delta,\delta^*,\pi^*,\sigma^*$ 結合を定義せよ。配位子場(結晶場)分裂はさしあたり無視してよい。(A) 続いて電子を配置せよ。(D) 最後に結合次数を算出せよ。

 $[\operatorname{Cr}_2(\operatorname{CH}_3\operatorname{CO}_2)_4(\operatorname{H}_2\operatorname{O})_2]$

- 【5】高スピンの Mn²⁺ は理想的な正八面体構造をとりやすいが、 高スピン Mn³⁺ は軸方向に変形(延伸または圧縮)していることが多い。なぜか。
- 【6】次の語句を2行程度で説明せよ。絵を使ってもよい。
 - (1) Madelung 定数 (2) Mulliken の定義による電気陰性度 (3) キレート効果 (4) 共鳴と平衡 の違い (5) Moseley の法則 (6) HSAB (7) Δ - Λ 異性 (8) 逆供与